
REPORT DOCUMENTATION PAGE 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction 

-data needed, and completing and reviewing this collection of Information. Send comments regarding this burden estimate or any other aspect o 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 12 
4302. Respondents should be aware that notwithstanding any other provision of law, no person shiJ|,be subject to any penalty for failing to corr 
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE APPRBSS.  

1. REPORT DATE (DD-MM-YYYY) 
15-03-2005 
4. TITLE AND SUBTITLE 

2. REPORT TYPE 
Final 

Multimodal  Human  Identification  for Computer  Security 

AFRL-SR-AR-TR-05- 

-TjT-u S-ü U U r Tö~3T-TÜ-2 00 4 
5a. CONTRACT NUMBER 

5b. GRANT NUMBER 
F49620-01-1-0343 

6. AUTHOR(S) 

Sohail Nadimi, Edward Hong and Bir Bhanu 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Center for Research in Intelligent Systems 
Bourns College of Engineering 
University of California 
Riverside, CA 92521 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
AFOSR 
4015 Wilson Blvd. 
Arlington, VA 22203-1954 

12. DISTRIBUTION / AVAILABILITY STATEMENT 
unlimited       DISTRIBUTION STATEMENT A 

Approved for Public Release 
Distribution Unlimited 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

8. PERFORMING ORGANIZATION REPORT 
NUMBER 

2005-10 

10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

13. SUPPLEMENTARY NOTES 20050325 128 
14. ABSTRACT ~~ —  

This report describes the work perforemd by CIPIAF fellows. Three research ideas are presented: 

(a) A cooperative revolutionary approach for object detection is developed. It fuses the scene contextual information with the available 
statistical and prediction information available from color and infrared sensors. The sensor fusion system maintains high detection rates 
under a variety of environmental conditions. The results are shown for a full 24 hour diurnal cycle. 

(b) An agent-based intrusion detection system, where evolutionary computational techniques, similar to those discussed in (a) are explored. 
A detailed architecture for a coevolutionary agent based system is given and the concept of super agent is described. 

(c) A performance modeling approach for object recognition is developed and the results are shown on synthetic aperture radar images. 

15. SUBJECT TERMS . ~ —  
Evolutionary Computation, Adaptation and Learning, Intrusion Detection, Performanec Modelinq 
Object Detection, Object Recognition. 

16. SECURITY CLASSIFICATION OF: Unclassified 

a. REPORT b. ABSTRACT c. THIS PAGE 

17. LIMITATION 
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
Spencer Wu 
19b. TELEPHONE NUMBER (include area 
code) 

703-696-7315 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 



Table of Contents 

Item Page Number 

Report Documentation Page 1 

Acknowledgement 2 

Chapter 1      Introduction 3 

Chapter 2      Evolutionary Fusion for Computer Security 5 

Chapter 3      An Evolutionary Agent Based Intrusion Detection System 38 

Chapter 4      Performance Modeling of a Vote-Based Recognition System 74 



Chapter 1. Introduction 

This is the final report on Multimodal human identification for computer security, AFOSR grant 

No. F49620-01-1-0343. The grant was part of a Critical Infrastructure Protection and Information 

Assurance Fellow (CIPIAF) Program to support one fellow. The PI on this Program was Prof. Bir 

Bhanu, Center for Research in Intelligent Systems, University of California, Riverside. 

Initially, we hired Dr. Ed Hong (U.S. citizen), who has a B.S. in Computer Science and Math 

from Yale and M.S. and Ph.D. in Computer Science (2002) from the University of Washington. 

Dr. Hong has a very strong background in mathematics and computer science. He conducted a 

focused research project on analytical methods for predicting the fundamental performance of 

recognition systems. Dr. Hong developed an improved method for predicting the bounds on per- 

formance of a vote-based object recognition system, when the test data features are distorted by 

uncertainty in both feature locations and magnitudes, by occlusion and by clutter. The method 

calculates lower and upper bound predictions of the probability that objects with various levels of 

distorted features will be recognized correctly. The prediction method takes model similarity into 

account, so that when models of objects are more similar to each other, then the probability of 

correct recognition is lower. The effectiveness of the prediction method was validated in a syn- 

thetic aperture radar (SAR) automatic target recognition (ATR) application using MSTAR public 

SAR data, which are obtained under different depression angles, object configurations and object 

articulations. Experiments show the performance improvement that can be obtained by consider- 

ing the feature magnitudes, compared to a previous performance prediction method that only 

considered the locations of features. 



Dr. Hong left UCR at the beginning of the fall 2003 for a full time tenure track faculty position in 

the Department of Computer Science at the University of Washington. 

The key accomplishments of Dr. Hong have been (a) writing a conference paper and (b) present- 

ing it at the SPJE conference in April 2003. Since then he has done some additional theoretical 

and experimental work and a draft is under revision which will be submitted for journal publica- 

tion. The conference paper presented by Dr. Hong is provided as Chapter 4 in this report. 

After Dr. Hong's departure, in June 2003 we hired Dr. So hail Madame (U.S. citizen) as the Fel- 

low on this grant. Dr. Nadimi received his B.S. in Industrial Technology and M.S. in Computer 

Science from San Jose State University and the Ph.D. degree in Computer Science (2003) from 

the University of California at Riverside. Prior to pursuing his Ph.D. degree he worked at IBM 

Almaden Research Center for four years. Dr. Nadimi's research interests are in computer vision, 

machine learning, image processing, image and pattern recognition and artificial intelligence. 

Dr. Nadimi worked on two major tasks: 

1) An evolutionary sensor fusion system for object detection 24 hours a day. It is described in 

Chapter 2. This chapter has been submitted for publication as a book Chapter in a book entitled, 

"Optical Imaging, Photonics, Sensors, and Systems for Homeland Security," (B. Javidi, Editor), 

Springer (to be published). An expanded journal paper will be published in the future. 

2) An agent-based intrusion detection system where evolutionary based techniques, similar to 

the one developed in 1) are explored. A detailed architecture for a coevolutionary agent based 

system is given and the concept of a super agent is developed. New features are developed that 

can be used for intrusion detection. The research performed under this task is described in detail 

in Chapter 3. Dr. Nadimi left UCR in October 2004 and has taken a position with KLA-Tencor in 

San Jose, California. 



Chapter 2. Evolutionary Sensor Fusion for Security 

Abstract: A robust moving object detection system for an outdoor scene must be able to han- 

dle adverse illumination conditions such as sudden illumination changes or lack of illumination 

in a scene. This is of particular importance for scenarios where active illumination cannot be re- 

lied upon. Utilizing infrared and video sensors, we develop a novel sensor fusion system that 

automatically adapts to the environmental changes that affect sensor measurements. The adapta- 

tion is done through a cooperative coevolutionary algorithm that fuses the scene contextual and 

statistical information through a physics-based method. The sensor fusion system maintains high 

detection rates under a variety of conditions. The results are shown for a full 24 hour diurnal cy- 

cle. 

2.1. Introduction 

Over the past several decades many approaches have been developed for moving object detection 

for indoor and outdoor scenes. Moving object detection methods fall into two categories: (a) fea- 

ture-based methods [21], and (b) featureless methods (e.g., image subtraction, optical flow, sta- 

tistical modeling) [2, 4, 6, 8, 18, 24]. Each of these methods offers advantages that are exploited 

for different applications. For example, temporal differencing is simple and may suffice for in- 

door type illuminations for slow moving objects, optical flow is useful for a moving camera plat- 

form and statistical modeling can capture the background motion. 

Some of the shortcomings of the above approaches for moving detection are: 

1) None of these approaches address the problem of low light or no light conditions, 

2) No contextual information is used to update the parameters, 



3) Generally, a large number of observations are required before a background model can be 

learned effectively, 

4) The algorithms have been applied to a single sensing modality (usually visible or near- 

infrared) and no results have been shown for extreme conditions, for example, no illumi- 

nation, sunset, or sunrise condition. 

To overcome illumination conditions such as low or no light conditions, other sensing modalities 

such as cameras operating in near or longwave IR have been utilized [3]. However, these sensing 

modalities could still fail due to similar conditions in their respective bandwidth. For example, in 

a longwave (thermal Infrared) camera, a subject's temperature could reach that of the back- 

ground, thus having limited contrast which may cause detection failure. 

Multisensor fusion attempts to resolve this problem by incorporating benefits of different sensing 

modalities. The advantages of multisensor fusion are improved detection, increased accuracy, 

reduced ambiguity, robust operation, and extended coverage. Sensor fusion can be performed at 

different levels including signal or pixel level, feature level and decision level. 

This chapter provides a novel sensor fusion system that fuses longwave (thermal IR) and visible 

sensors in a unified manner. By utilizing the IR signal, we can overcome some of the limitations 

of the visible cameras and by combining the visible and IR signal we improve the detection under 

a variety of conditions. The salient features of our approach are: 

a) Consistent data representation: At the image level all sensing modalities are represented by 

mixture of Gaussians in a consistent manner. 

b) Physical models: Sound physical models are used for each sensing modality (e.g., visible and 

IR) to provide prediction for each signal. 

c) Evolutionary-based approach for fusion: A cooperative revolutionary algorithm is devel- 



oped to systematically fuse and integrate information from both statistical and physical mod- 

els into a unified structure for detection, 

d)  Context-based adaptation: Environmental conditions such as ambient air temperature, wind 

velocity, surface emissivity, etc., are directly incorporated into the detection algorithm and 

influence the fusion strategies. 

Chapter 2.2 provides the related work and motivation, Chapter 2.3 presents the details of the 

technical approach, Chapter 2.4 discusses the experimental results and finally Chapter 2.5 pro- 

vides the conclusions of the chapter. 

2.2. Related Work and Motivation 

Current multisensor fusion and integration approaches use the following paradigms: 

(a) Statistical Paradigm: This paradigm utilizes the statistical properties of signal at pixel, 

feature or decision level. It includes statistical methods such as Bayesian, Dempster-Shafer, and 

Fuzzy approaches. These approaches have been used extensively for fusion due to their well- 

developed mathematics. In [1] Bayesian and Dempster-Shafer multisensor fusion methods are 

compared for target identification. In [9] a Bayesian-based method for lane detection is 

developed. In [15, 16] statistics-based techniques have been used for fusing video, near infrared 

(NIR), mid-wave infrared (MWIR) and long wave infrared (LWIR) signals for image 

enhancement. Statistical-based fusion approaches provide a unified framework and methods 

that can deal with sensor noise; however, they require enormous amounts of data and prior 

knowledge of statistical properties of the signals. 

(b) Artificial Intelligence (AI) paradigm: This paradigm attempts to fuse the data through 

methods such as knowledge-based, rule-based and information theoretic methods. Examples of 



Al-based fusion techniques are [5, 20] for image enhancement and target detection, and [7] for 

robotics. This paradigm has the advantage of incorporating contextual information, heuristics 

and domain knowledge by utilizing well developed algorithms in the AI field; however, once 

designed, addition of new sensing modalities requires a new set of algorithms and/or domain 

knowledge and heuristics that are generally provided by external experts for expansion of 

knowledge rules. 

(c) Data Structure paradigm: This paradigm utilizes various representations such as graphs, 

trees, tables and data structure-specific techniques such as graph traversal. Tertian [19] and 

Waxman [23] provide methods for fusing FLIR and an image intensifier data for image 

enhancement. In [10] an approach is introduced to fuse acoustic and video data for underwater 

vehicle tracking. This paradigm works well when the data can be represented by one of the 

structures mentioned. The obvious disadvantage of this paradigm is that once the data structure 

is defined, it may not be possible to extend the method to new sensing modalities; therefore, this 

paradigm is suitable when all sensing modalities participating in fusion are known in advance. 

(d) Physics paradigm: This paradigm utilizes the sensor phenomenology to model the signals, 

based on the physical aspect of the world. Physical models describe the relation of object 

parameters (e.g., surface reflectance, orientation, roughness, temperature, material density, etc.) 

to scene environmental parameters (such as ambient temperature, direction of illumination, 

wind velocity, etc.) to predict sensor values. 

Pavlidis et al. [13] develop an automatic passenger counting system based on sub-bands below 

short wave infrared (SWIR). They measure reflectance of many objects including human beings; 

they note that the human skin reflectance spectral map is very similar to that of distilled water; 



they relate this phenomenon to the fact that humans are 70% water. In [12] several physical 

models have been developed to model the thermal, acoustic and laser radar signals for various 

segmentation problems. The fusion is viewed as the problem of relating scene parameters to 

object parameters. Since IR bands above 3\im increasingly measure thermal fluctuations, they 

model a surface based on heat conductance and use the conservation of energy to model the 

interaction of surface and radiation. 

Among the four paradigms AI and data structure-based paradigms are less suited for dynamic 

conditions whereas the statistics and physics-based paradigms are the methods of choice for inte- 

grating sensor information that can change over time. We provide a new sensor fusion technique 

that combines the statistical and physics-based fusion paradigms through an evolutionary proc- 

ess. We overcome the disadvantage of each of these paradigms by including suitable sensor 

models that have enormous generalizing power. This generalizing power is then used to com- 

plement the limited available sensor data that is required by the statistical methods. The fusion is 

performed at the pixel level where the information loss is minimal. 

2.3. Technical Approach 

The sensor fusion architecture for moving object detection is depicted in Figure 1. Observations 

from the sensors along with the external conditions, which carry the contextual information, are 

used to build statistical (mixture of Gaussian) background model. The contextual information is 

also used to update values of internal physical models. Physical models include reflectance mod- 

els for predicting image intensity values and thermal models for predicting background surface 

temperature values. Unlike the previous work that updates the background models solely based 

on the current observations, we incorporate the physical models into the adaptive loop. The 



physical models are integrated with the statistical models through a cooperative coveolutionary 

process [14]. The cooperative coevolutionary process estimates the best representation for the 

background per pixel. This is done through a genetic evolutionary process that searches for the 

optimal representation based on the current, and recent past observations and detection results in 

addition to the predictions given by the physical model. 

IR-Visible Contextual Information 

i 1 
Models 

• Physics-based 
• Statistical 

i 
Dynamic Sensor Fusion 

• Coevolutionary Computational Model 
• Internal Self Evaluation 

i r 

Adaptive moving object 
detection 

Figure 1. Sensor Fusion Architecture. 

Our representation of mixture of Gaussians (described in section 3.1) includes Gaussian parame- 

ters for the infrared and visible sensors (including RGB channels). A population of this represen- 

tation is maintained as a pool of individuals for the evolutionary process. Once the evolutionary 

process is stopped, the best individual represents the background model of that pixel. In this 

manner, the contextual information plays an active role in contributing to the most ideal sensor 

for a particular condition. 

The detection algorithm in Figure 1 requires a model of the background. This model is estimated 

by a mixture of Gaussians. Table 1 shows this process. The details are explained in the following 

sub-sections. 
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Table 1. Algorithm for learning background model for a pixel. 

Evolutionary Adaptive Background Modeling 
S = Training set which includes prediction, observation, and previous classification results per pixel; 

Note: An organism represents a solution. 

 Cooperative Coevolution Algorithm per Pixel—  

Steps 
1 - Create and initialize 4 subpopulations for each channel 

2 - Loop 

3 -  For each Sub-population 

4 -     For each individual 

5 - Build an organism {e.g., combine representative individuals from different sub-populations) 

6 - Evaluate the organism using the training set S and Forgan|Sm 

7 - Store the new fitness value for the individual 

8 -      EndFor 

9 -   EndFor 

10 -   Evolve all sub-populations (Selection, Mutation, Crossover) 

11 - Until stop Condition 

12 - Return the best organism (best organism or solution is the best individual from each subpopulation) 

2.3.1 Representation 

The probability of a pixel, classified as a background, drawn from a probability distribution can 

be estimated by a mixture of density functions. Assuming the parametric form of the mixture is 

Gaussian, probability of observing a background pixel is: 

m 

P(X) = £w,i7(X,#,L,) 
i=l 

where X is the pixel value, Wj is the weight of the ith Gaussian, m is the number of Gaussians, 

and ?] is the Gaussian form characterized by the mean //, and covariance Ej. Assuming R (Red), G 

(Green), B (Blue), and T (Temperature) channels are independent, each pixel is represented by its 

first order statistics for each respective channel as follow: 
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IR = <FitnessR, WRj, p^, «^„.„W^, ^ o^, 

IG = <FitnessG, W^, n^ o^,..., WGm, nGm, cGn>, 

IB = <FitnessB, WBi, l^^ oBl,...,Wv y^, aBm>, 

IT = <Fitness_, WT , u_ , aT ,..., WT , \JL, , aT > 1        1l      M      M Im      lm      1m 

where Fitness is an evaluation value assigned to the mixture model for a given channel (see Sec- 

tion 3.3). Therefore, background model for a pixel is represented by concatenating the represen- 

tations of all the channels, which represents a solution instance. An evolutionary-based search 

algorithm (see Section 3.3) is used to search the solution space for an optimal background repre- 

sentation. 

3.2 Physical Models 

The algorithm shown in Table 1 uses the physics-based predictions in its evaluation phase. 

Models of bi-directional reflectance distribution functions (BRDF) and thermal equilibrium 

based on conservation of energy are used to predict surface color and temperature in the visible 

and longwave IR. The models are briefly described here. 

3.2.1 Physical Models of Reflectance 

Several reflectance models including the Lambertian, Phong, dichromatic [17] and Ward [22] 

models have been developed to describe the reflectance due to normal, forescatter and backscat- 

ter distributions. We utilize the dichromatic model: 

UK e) = Li(A„ e) + Lb(X,e) =mj(e) a(k) + mb(e) cb(k); 

where L is the total reflected intensity, Li and Lb are reflected intensities due to surface and sub- 

surface respectively, m, and mb are geometric terms, Cj and cb are relative spectral power distribu- 

tion (SPD) of the surface and subsurface respectively, and e is a vector representing incident and 

reflected light angles with respect to the surface normal. The dichromatic model is useful in de- 

12 



scribing the reflection from inhomogeneous opaque dielectric materials (e.g., plastics). It is also 

useful in describing material colors since the SPD of the reflected light due to subsurface is de- 

coupled from the geometric terms. To calculate the invariant body color, the image is segmented 

into regions with uniform reflectivity. For each region, pixel values in the RGB space are formed 

into a matrix M of size n x 3 where n is the number of rows (pixels) and 3 represents R, G, and B 

values. Singular value decomposition is then applied to M and the singular vector corresponding 

to the largest singular value is selected as the body color (cb), which is the predicted surface color 

[11]. 

3.2.2 Thermal Physical Model 

For predicting surface temperatures in the longwave IR, the following conservation of energy 

model is used. Ejn = Eout; Eout = E,.ad + Ecv + Ecd ; Where Ejn is the input energy, Eout is the output 

energy described by three phenomenon Erad (energy radiated), Ecv (energy convected), and Ecd 

(energy conducted). Models for each energy flux is described in details in [11]. Briefly the fol- 

lowing models are used to describe each of the above fluxes: 

■Mn = ^direct + ^skylight + ^atm 

EdirectKlOSQ.S/ma)^-02819^ 

Eatm = E(BB,Ta) {1-[0.261 e~777*1(M(273'Ta)2]} where 

Edirect = direct irradiation due to sun, Eskyiight = irradiation due to sky = (40-70 W/m2), Eatm = irra- 

diation due to upper atmosphere, ma = The number of air masses (ma ~ secant(Z)), Ta = Air tem- 

perature, E(BB, Ta) = radiation of a blackbody at Ta temp, and Z = sun's Zenith angle. 

Erad is estimated based on Stephen-Boltzman law: 

Eb = a T4, where a = 5.669 x 10"8 watts/m2 Kelvin4 and the subscript b is for blackbody which is 
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capable of 100% absorption (or emission) of energy. 

The convected heat flux is given by: 

Ecv = hcv (Ts - Too) 

where hcv is the convective heat transfer function which is a complex phenomena, Ts and Too are 

surface and fluid temperatures respectively. For laminar flow, hcv can be roughly estimated by the 

following empirical model: 

hcv =1.7   I Ts - Ta |1/3 + (6 Va08) / L02 

where Va = wind speed; L = characteristic Lateral dimension of surface, Ts and Ta are surface 

and air temperature respectively. 

The conducted heat flux is described by: 

Ecd = A(T2-Tl)/(L/k) 

where A is the area, T2-T1 is the differential temperature and LA is called the thermal resistance 

or R-value and is tabulated for many materials. The above equilibrium model is solved for Ts, 

which is the predicted temperature. 

2.3.3 Background Model Estimation 

As mentioned in Section 3.1, a pixel is represented by concatenating mixture of Gaussian models 

of all its channels R, G, B, and T. In the mixture model, a single Gaussian is parameterized by W, 

u,, and a; therefore, finding the best representation for a pixel with 4 channels represented by m 

Gaussians in each channel, requires searching ina4x3xm= 12m dimensional space. There are 

several search algorithms including brute force (e.g. depth first, breadth first), gradient methods 

(e.g. neural networks), heuristic methods (e.g., best first, beam search, A*), and genetic algo- 

rithms (GA). 

14 



Brüte force methods are computationally expensive. Gradient-based techniques are suboptimal 

and may converge to local maxima. And, heuristic methods suffer from the curse of dimensional- 

ity. Genetic algorithms search from a population of individuals, which makes them ideal for par- 

allel architectures. They have the potential to provide the global maximum. 

Genetic algorithms are based on evolutionary process, examples of which are abundant in nature. 

In a typical GA the solution to a problem is encoded in each individual representation. A popula- 

tion of these individuals is randomly created. This population represents the location of individu- 

als in the search space. An evaluation function (fitness function) that plays the role of the envi- 

ronment, rating individuals in terms of their fitness, is defined. The fitness function is used to 

rank individuals in the population. To continue exploring the search space, new populations are 

generated where individuals in the new population are selected based on the performance of their 

predecessors. In other words, solutions that have higher fitness value (e.g., better representations) 

are given more chance of being propagated in the next generation. In order to explore this search 

space more effectively, randomization is introduced in the selection of the individuals. There are 

two main operators for this randomization, referred to as crossover and mutation. Crossover is an 

operation where two individuals swap portions of their representation in random, effectively cre- 

ating new offspring (solutions) encoding part of their parents (old solutions). Mutation is an op- 

erator that randomly, usually with low probability, changes a representation, for example, flip- 

ping a bit in a bit string. By applying the crossover, mutation and selection operators, the GA ef- 

fectively explores the search space in a parallel fashion. 

The Cooperative Coevolution (CC) algorithm utilized here is a recent evolutionary, GA-like, al- 

gorithm [14]. Like the GA algorithm, the CC algorithm explores the solution space in a random 

fashion. As in GA, the CC algorithm applies the operators crossover, mutation, and selection to 
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generate potential solutions. However, in CC, the representation of a solution is broken down 

into sub-parts, each of which encodes part of the solution and is evolved separately. Therefore, 

sub-populations are generated and maintained in each generation of the CC algorithm. In this 

manner, the opportunities for searching and exploring different solution subspaces are increased. 

By comparing the algorithms in Figure 2, it is clear that the major difference between these two 

models lies in how the evaluation of individuals is performed. As stated earlier the evaluation in 

the GA model is performed on an individual (as a whole) in a population; on the other hand, in 

the CC model, individuals from separate sub-populations must come together to create an "or- 

ganism" that is viewed as the solution. Hence, in the CC model, an individual cannot provide a 

meaningful solution to the problem and requires the cooperation of individuals from other sub- 

populations. 

Procedure GA() 
initialize population 
loop 

evaluate individuals 
store best individual 

select mating candidates 
recombine parents and use their 

offspring as the next generation 
until stopping condition 

return best individual 

Procedure CC() 
initialize subpopulations 
loop 
evaluate organisms (solutions) 
store best organism 
for each subpopulation 

select mating candidates 
recombine parents and use their 
offspring as the next generation 

end for 
until stopping condition 
return best organism 

Figure 2: Comparing a typical GA and CC algorithm. 

The success of CC depends on 4 criteria: 

1) Problem decomposition, 

2) Interdependability, 

3) Credit assignment, and 
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4) Population diversity. 

Our sensor fusion algorithm satisfies all four criteria's since 

a) our problem is naturally decomposed (color video and IR), 

b) our representation (mixture of Gaussians for all the 4 channels (R* G, B, and T)) provides in- 

terdependences between subcomponents, 

c) the objective or fitness function minimizes the discrepancy between the physics-based predic- 

tion and the actual observations in both IR and video, and 

d) population diversity is maintained by roulette wheel selection method. 

As mentioned, an important part of the evolutionary algorithm is the evaluation function, referred 

to as the fitness function. We provide a suitable fitness function that integrates the statistics col- 

lected by the system and the physical models that are directed by the contextual information (en- 

vironmental conditions). The cooperative coevolutionary (CC) algorithm is used to select an op- 

timal representation for a pixel background based on the recent past observations, classification 

(background vs. foreground) results, and physics-based predictions. 

Fitness Function 

For each channel, a population of individuals (see Section 3.1) is initially created randomly. 

These individuals are maintained for both the video channels (R, G, and B) and the thermal 

channel (T). 

Briefly, the CC algorithm (see Table 1 and Figure 3), works as follows: Initially, 4 groups of in- 

dividuals of type IR, IG, IB, and IT are randomly initialized. Each group is called a sub-population 

and each member of a sub-population is referred to as an individual, which is also assigned a fit- 
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ness value. The fitness value (see Figure 3) is a measure of goodness and indicates how well that 

individual represents the background for its respective channel. 

Individuals are rewarded when they perform well together as a team and punished when they per- 

form poorly. This is the key concept in cooperative coevolutionary paradigm. In the example in 

Figure 3, to evaluate an individual in the red channel, it is combined with representatives from 

other sub-populations (in this case the representative of a sub-population is an individual with the 

highest fitness value); an organism is then created. The fitness value of the organism, Forganism, 

indicates how well the individual (IR in this example) fits with other channels. In another words, 

the fitness value indicates the contribution of this individual as part of a whole solution. 

The evaluation of the fitness function requires a training set. This training set is a recent past his- 

tory, which includes observations, predictions, and classifications for each pixel and is kept in a 

QUEUE. To initialize the algorithm, initial n frames of background from all channels R, G, B, 

and T are collected and kept in a memory queue. Similarly a physics-based prediction for each 

pixel for each frame is kept in the memory queue. Since the initial n frames are assumed to be 

background, the groundtruth at the initialization stage is known (e.g., all pixels represent back- 

ground). As a new frame is observed and pixels classified as either background or foreground, 

this training set is updated in a LIFO (Last In First Out) manner. 

Pixel classification is the result of detection where a pixel is classified as background if its value 

falls within 3a of any of its Gaussians for all the channels; else, it is considered a foreground. 

For each channel, let an individual Iy in a population be represented as in Section 3.1 where Y 

represents a channel, Y e {R, G, B, T}. Let: 

Yxob = Observed value of a pixel X at jth frame for channel Y, j = 1 .. n ; n = size of the window 
j 

in the past. 
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YXp = Predicted value of a pixel X by physics for the jth frame for channel Y. 
j 

P(YX) = The probability distribution function for the pixel X for channel Y . 

Sub-population for 
Red Channel 

at time t 

Sub-population for 
Green Channel 

at time t-1 

Sub-population for 
Blue Channel 

at time t-1 

Sub-population for 
Thermal Channel 

at time t-1 

Fitness Fitness Fitness Fitness 
Value Wi m ai    . Wm um om   Value W, m d ... Wm fa a. . Value Wi a, g, ... Wm ik om i 

Value Wi m 01 ... Wm fa om 

Potenial Solution 
(Organism) 

Figure 3: Example of evaluating an individual in the red channel - Individuals with highest fitness 
value in their population from other channels at the previous generation are combined to form an 
organism (solution). The result is stored back for the individual in the red channel. 

We keep a moving window of n previous frames for all the channels. This window serves as the 

groundtruth data, G, for training examples. Unlike most other works that only use the last or cur- 

rent observation (frame) to update the mixture of Gaussians, we elect to keep a window of 

frames. Let 

Gj = 
U=l..n} 

1 Background 

0 Foreground 

where {j = l..n} represents the last n frames (e.g., Gi = current frame, G2 = previous frame, and 

so on), and G is used as part of the training set S. Initially G for the current frame is obtained by 
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using the mixture of Gaussian parameters that are obtained at time t-1. After the learning process 

has been completed for the current frame, G for the current frame is updated based on the learned 

parameters of mixture of Gaussians. In order to relate statistics-based classification and the phys- 

ics-based predictions, we introduce the following function, named credibility function for each 

channel: 

n -a Y Gj'       J   v   J+(1-Gj)(l-        J   v   J) 
Yxobi-Yx obi     XAPi 

nj^      Yxobj+Yxpj Yxobj+YxPj 

where vectors G, YXob and YXp are defined as before and a controls the rate of decay of credibility 

function. As the observed values YXob are closer to the predicted values YXp for a particular clas- 

sification G, then the value of the credibility approaches tol. For example, it is easy to verify that 

in the extreme case where a pixel is classified as the background pixel in all the previous n 

frames, and that the predicted pixel values matched the observed values, the credibility will be 

close to 1. 

The physics-based prediction predicts color and thermal properties of the background, therefore, 

it will be more credible if the observed pixel value is classified as the background pixel, and the 

predicted pixel value agrees with the observed value. Similarly, if the physics predicts a very dif- 

ferent value than observed value and the system has actually classified the pixel as the fore- 

ground, then the physics may still be credible. On the other hand, if the physics-based prediction 

is very close to that of the observed value but the system has classified the pixel as foreground, 

then the physics-based prediction may not be reliable and a low credibility must be assigned. 

This process is depicted in Table 2. 
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Table 2: Credibility table describing the relationship between the predicted and observed 
values. 

Difference of current observed with predicted 
by physics 

High                                       Low 
Classification: Background 

Foreground 
LOW Credibility HIGH Credibility 
HIGH Credibility LOW Credibility 

The statistical estimation of fitness function based on the recent past observations for an individ- 

ual, in channel Y, is given by: 

F(IY) = 12 [G,P(Yxobj) + (1 - G,)(l - P(Yxobj)] 
n j=i 

The above function is only based on the statistical properties of the current and past observa- 

tions. Given F(IY) and the credibility function Cy for individuals for all channels R, G, B, and T, 

then, a fitness function for an organism (solution) made of both video and IR species (e.g., R, G, 

B, and T channels) can be realized as follows: 

Forganism «IR, IG, IB, IT>) = VA [CR F(IR) + CG F(Io) + CB F(IB) + CT F(IT)] 

The above equation is used for evaluating the organisms formed by the video and IR signals, in 

which the individual being evaluated, is part of a complete solution, see Figure 3. 

The final solution is the organism obtained by selecting the best individual (e.g., individual with 

highest fitness value) from each subpopulation. This solution is used to classify the current pixel 

as background or foreground. 

The parameter a adjusts the importance of the role the credibility function plays in the fitness 

function, a can be adjusted depending on how fast the credibility function is desired to be influ- 

enced by the agreement between the physics prediction and actual observations. 

Figure 4 shows how the parameter a affects the rate of change in the credibility function. For the 

observed temperature of 285° K, if the predictions are credible but not as close to the observed 
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values, then lower values of alpha are desired. On the other hand, if tight coupling between phys- 

ics predictions and observations is required, higher values for a are desired. 
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Figure 4: Credibility values for various values of alpha (a) for the thermal channel. 

2.4. Experiments 

The data was gathered at a typical urban location with the latitude 33° 50' 06" N and longitude 

117° 54' 49" W, from 15:30:00 on January 21, 2003 till 14:24:00 January 22, 2003. Initially, 

from 15:30:00 till 17:07:04, data was collected at the rate of 1 frame every 2 seconds, then the 

temporal resolution was changed to approximately 1 frame per 10 second for the rest of the data 

collection period. Two cameras, a FLIR system thermal camera operating at 7-13 urn and an Intel 

web-cam operating in the visible range were utilized for data acquisition. The thermal camera 

was fully radiometric, which means that the pixel values obtained by the camera were thermal. 

The thermal camera included self-calibration that at specified intervals adjusted to internal ther- 

mal noise. The radiation-to-temperature conversion was done automatically by the camera for the 

default values of emissivity = 0.92, air and ambient temperatures = 280° Kelvin, distance to tar- 

get = 100 m, and humidity = 50%. 
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Sunrise: Eastty 

fif ;i<P«*g^|     t: ^   ' 

Sunset: West 

Figure 5. Position of the cameras with respect to the scene and the direction of the sun's 
path. 

The video camera was attached on the top of the thermal camera on a tripod (see Figure 5). Both 

cameras were located 20 feet above the ground looking downward at the scene at an angle of ap- 

proximately 25°. In addition to the thermal and the video cameras, a complete weather station 

was utilized to obtain weather data every minute. The weather station included an anemometer, 

humidity sensor, wind direction, two temperature sensors, and a barometer sensor. All sensors 

and the cameras were controlled by a PC. The data from the cameras and the weather station 

were synchronized through a software control. 

To avoid temporal registration, both cameras were triggered simultaneously and in parallel. For 

spatial registration between the two cameras affine transformation was applied. For predicting 

correct reflectance and thermal predictions, a split and merge algorithm initially segmented the 

images for both cameras and a user initially labeled the segments into 5 regions, asphalt, con- 

crete, grass, bush, and unknown. Only statistical properties were utilized for the unknown surface 

type. 

2.4.1 Physical Model Estimation and Predictions 

For surface color estimation, the dichromatic model was utilized. The results for the four differ- 

ent pre-segmented surfaces are given in terms of unit vectors in the RGB space. Due to lack of 

illumination during the nighttime, the values were obtained after sunrise and before sunset for 
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various times and are given in Table 3 at an hourly illumination condition. The asphalt and con- 

crete had similar vectors due to their neutral color attributes. On the other hand, the chlorophyll 

in the vegetation such as grass and bush causes the vectors to be shifted toward green. The higher 

variation in the reflectance of grass and bush are contributed by their surface specularity, which is 

not modeled by our algorithm. 

Table 3. Surface body color estimation (Cb). 

Time 
Asphalt Concrete 

R G B R G B 
8:30 .5727 .5726 .5867 .5813 .582 .5687 

9:30 .5714 .5716 .5889 .5791 .5797 .5732 

10:30 .5773 .5714 .5862 .5824 .5824 .567 

11:30 .5669 .5676 .5970 .5737 .5745 .5838 

12:30 .5695 .5695 .5927 .5686 .5749 .5884 

13:30 .5682 .5680 .5954 .5767 .5753 .5801 

14:30 .5741 .5720 .5859 .5681 .5752 .5886 

15:30 .5635 .5520 .6025 .5570 .5723 .6019 

16:30 .5623 .5684 .6006 .5572 .5802 .594 

17:30 .5544 .5668 .6095 .5566 .5813 .5935 

Time 
Grass Bush 

R G B R G B 
8:30 .6336 .7260 .2672 .5718 .6239 .5327 

9:30 .6343 .7189 .2844 .5893 .6240 .5132 

10:30 .6369 .7128 .2938 .5662 .6368 .5234 

11:30 .6320 .7193 .2883 .5476 .6250 .5563 

12:30 .6256 .7376 .2543 .5430 .6370 .5471 

13:30 .6249 .7364 .2591 .5749 .6404 .5093 

14:30 .6210 .7391 .2611 .5968 .6338 .4921 

15:30 .6060 .7505 .2636 .5639 .6421 .5193 

16:30 .6040 .7572 .2486 .6567 .6369 .4039 

17:30 .6231 .7380 .2590 .6321 .6357 .4431 

For surface temperature prediction, the thermal models of Section 3.2.2 were used. These predic- 

tions were used by the fitness function in section 3.3.1. We obtain the result of predictions super- 

imposed on actual measurements by the thermal camera. The models were able to track tempera- 

ture fluctuations for 4 different surface types. The average difference between the prediction and 

24 



measurement for all surfaces were about 2°c with standard deviation of 1.87°c. 

2.4.2 Detection Results 

Moving object detection is performed after an initial background model is built. Once new ther- 

mal and video frames are available, they are registered. The registered image then contains red, 

green, blue, and temperature values at each pixel location. The cooperative coevolutionary algo- 

rithm is used to build the background model. Each pixel is updated independently. The back- 

ground model is periodically updated to track the environmental changes. The following parame- 

ters were used in the cooperative coevolutionary algorithm to update the background models: 

number of species = 4; population size = 60; crossover = single point; crossover rate = 0.8; mu- 

tation rate = 0.01; maximum number of generations = 60; training data = 20 frames; number of 

Gaussians per sensor = 3; a = 0.5. 

Once the background model is available, for each incoming frame, each pixel is compared to its 

corresponding model and if its value is within 3 standard deviation of any of its Gaussians, it is 

classified as a background pixel. This information is kept in a binary image where a detected 

moving pixel is a binary 1 (white) and a background pixel is 0 (black). These binary frames pro- 

vide training data for the next background model update. In the following examples, in addition 

to the thermal IR and video frames, detection for each camera and the fused detection for the reg- 

istered images are also provided. The following confusion matrix is given for the results for all 

the moving objects: 
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% Moving object correctly detected % Moving object missed 

% Background missed % Background correctly detected 

Figure 6. Performance measure. 

• Example 1: Figure 7 shows example frames detected in the afternoon and early evening 

hours. During this period, illumination and heat exchanges are rapid. Depending on the heat 

stored and reradiated by an object and the background the object may be observed having very 

similar temperatures as the background (IR frames 2408 and 2685) or very different (IR frames 

2422 and 2676). In frame 2408, video signal was much stronger, providing sharp contrast for the 

moving objects. Despite the lower performance of the IR, the objects were recovered by the 

video. Similarly, in frame 2422, the detection result of the IR was further enhanced by the regis- 

tered video as is shown in the fused detected frame. Frames 2676 and 2685 are obtained during 

early evening hours. The video camera had a 25 lux minimum illumination requirement; there- 

fore, although the scene was not totally dark, the video signal during the night time was very 

weak. This was compensated by the strong IR signal. 

• Example 2: Figure 8 is an example where the detection algorithm relied heavily on one sen- 

sor, IR. Due to lack of illumination and video sensor's low sensitivity, objects could not be de- 

tected by video only. A good example is frame 2726 where a car and a person were in the scene. 

These were not observed in the video; however, they were present in the IR image and were 

clearly detected in both IR and the fused frame. Frames 2741, 6692 and 6718, indicate that the 

detection was not influenced by the video. The lights from the vehicles were visible and detected 

as part of the moving object, and the surface reflection from the lights did not affect the results. 
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Time 
Frame # 

m 

Video 

16:58:03 
2408 

16:58:34 
2422 

18:56:11 
2676 

18:57:43 
2685 

Registered 
Video 

Detected 
(IR only) 

[Confusion Matrix] 

Q 
.3857 .6143 

.0100 .9900 

3 
.8493 .1507 

.0075 .9925 

Detected 
(Video only) 

[Confusion Matrix] 

H 
.9182 .0818 

.0161 .9839 

H 
.8401 .1599 

.0048 .9952 

■ 
.0760 .9240 

.0003 .9997 

Detected 
FUSED 
(1R+VIDEO) 

[Confusion Matrix] 
.9340 .0660 

.0585 .9415 
.9445 .0555 

.0106 .9844 

.8825 .1175 

.0067 .9933 

.6945 .3055 

.0061 .9939 

Figure 7. Example 1: Mixed good and bad IR and video at various times in the afternoon 
and early evening. 

This is due to the fact that the physics-based prediction assigns low credibility to the video sig- 

nal; hence, low reflections are not detected as foreground. In effect this plays a role in deciding 
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how important a camera's observations are. If a video pixel gets a low credibility, then its values 

are less meaningful; therefore, in order to observe a change, the signal must be strong (e.g., front 

head lights of a car). Since the front head lamps of most vehicles are halogen and radiate heat, 

they are also observed as part of the vehicle in the IR image, thus, they are also being detected as 

part of the vehicle. 

Time 
Frame # 

19:04:42 
2726 

19:07:15 
2741 

06:20:43 
6692 

06:25:09 
6718 

ER 

Video 

Registered 
Video 

Detected 
(IR Only) 

Detected 
(Video only) 

Detected 
FUSED 
(IR+Video) 

Figure 8. Example 2. Good to excellent IR signal, bad video signal at night. (Note: Due to 
lack of video contrast no groundtruth is obtained.) 
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• Example 3: Figure 9 is an example of dramatic illumination changes during the early sunrise 

and early morning hours. During these periods, the environment changes radically due to the en- 

ergy of the sun. The sensors must adapt to these rapid changes. Figure 6 shows the thermal 

changes on different surfaces that are tracked by the physics-based models. As shown, the slope 

of the temperature values changes radically during this period. However, the physics-based mod- 

els are able to follow these changes and provide high credibility values that affect the background 

models built by the algorithm. As the illumination reaching the video camera is increased, the 

detection due to video gets better. This is shown in frames 6792 and 6820 where the video cam- 

era began participating in the detection process. This is indicated by the increase in the detection 

performance for the fused image versus the IR or video only images. 

• Example 4: Figure 10 is an example of early morning, noon and early afternoon hours. As 

the sun comes up, the surfaces are heated up by the incoming energy from the sun, the increase in 

the surface temperatures approaches closer to the temperatures of some moving object surfaces. 

Depending on the moving object surface temperatures and emissivities, the contrast in the IR can 

be radically different. This is obvious between frames 6954 and 8646 for example. Frame 6954 

represents an image in the morning with a person in the scene. Surface temperatures are still 

lower than that of the human body; moreover, human body's emissivity is high (0.98) compared 

to the background surfaces. The human is clearly visible in the IR image. Although not visible in 

the video image of frame 6954, the human is also in that image; this is clearer in the registered 

image. Both sensors provide good contrast in this case and the person is clearly detected. 

Frames 8646 and 9350 show moving objects later in the day when surfaces have reached higher 

temperatures. In this case, it is possible to have a moving object that may have temperature close 

to the background surface as is indicated by both of these frames. On the other hand, video pro- 
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vide excellent signal and contrast. Many pixels are missing from the detected IR only, but the 

final fused detection recovers most of these missed pixels on moving objects. 

Time 
Frame # 

IR 

Video 

Registered 
Video 

Detected 
(IR Only) 

[Confusion matrix] 

Detected 
(Video only) 

[Confusion matrix] 

Detected 
FUSED 
(IR+Video) 

[Confusion matrix] 

06:37:46 
6792 

■ 
.5466 .4534 

.0005 .9995 

06:42:33 
6820 

06:54:27 
6890 

Figure 9. Example 3: Fusion while illumination changes at sunrise. 
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Figure 10. Example 4: Mixed IR and good video signal. 

2.4.3 Performance Analysis 

To compare the performance of the detection algorithm for sensor fusion, we utilize the Receiver 
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Operating Characteristic (ROC) curves and define the probability of detection as percentage of 

moving object pixels that are correctly detected and probability of false alarm as percent of back- 

ground pixels that are classified as moving object. We selected frames representing afternoon, 

early morning and high noon for this analysis. The nighttime was not selected since no video sig- 

nal was available at night (6:30 p.m. - 6:30 a.m.) and the detection algorithm relied only on the 

IR sensor; this was explained in example 2 above. The first ROC curve, Figure 11(a), represents 

an afternoon time. An example of this is frame 2408 in Figure 7. As is indicated by example 1 

frame 2408 and this ROC curve, the video signal operated at a higher rate than the IR signal. The 

fusion method provides a higher level of performance than both the video and the IR. 

The ROC curve of Figure 11(b) is an example of early morning hours. This figure is in contrast 

to that of Figure 11(a) in the afternoon. In this case the detection rates for both the IR and the 

fused image were high and the video sensor operated only nominally. This is again due to the fact 

that a great deal of energy has been dissipated to the environment throughout the night during 

early morning hours, and a large gradient may exist between natural surface temperatures and 

those of animated objects with internal sources of energy such as vehicles and humans. In addi- 

tion, the video signal, as indicated in Figure 9, example 3, is rapidly changing due to the illumi- 

nation changes when sun is rising in the sky. 

The third ROC curve, Figure 11(c), is an example of how fusion can enhance the detection when 

both sensors may be operating at lower rates. This is an example when cooperation between sen- 

sors can play a complementary role. This is due to the fact that different sensors may detect dif- 

ferent parts of an object. So, one expects sensor fusion to do much better in detecting more pixels 

on the object than any one of the sensors alone. This is observed from frames 8646 and 9340 of 

example 4 in Figure 10 when for example, the detected IR and video frames have detected differ- 
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ent parts of the same object. 
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Figure 11. ROC curves for various periods of the day. (a) afternoon-evening, (b) early 
morning, (c) morning-noon. 

These ROC curves also indicate that as the time of day changes, the dynamic sensor fusion intro- 

duced here can automatically adapt to environmental changes. This adaptation is also in the form 

of adapting to the best sensor at the time. The cooperation among sensors can also take on a 

complementary role when different cameras are able to detect different part of an object that may 

not be visible to the other. This adaptation is done continuously in a cooperative manner. 
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2.5. Conclusions 

In this chapter a novel physics-based sensor fusion technique for moving object detection was 

introduced. The sensor fusion architecture integrated the statistical and phenomenology of the 

sensors in the visible and longwave IR through an evolutionary computational model. Our repre- 

sentation, mixture of Gaussians, along with the cooperative coevolutoionary search algorithm 

integrated the contextual information through the physics-based and statistical models. We 

showed that our fusion model adapted to various illumination conditions and is suitable for de- 

tection under variety of environmental conditions. 
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Chapter 3: An Evolutionary Agent Based Intrusion Detection System 

Abstract: With the advent of more sophisticated network and computer systems, and participa- 

tion of the public on the Internet, potential for abuse of the information and resources has greatly 

increased. This potential has flourished in variety of methods and techniques for obtaining access 

and/or manipulating a computer system and its contents. Whether it is software such as computer 

virus, worm, Trojan horse, etc. or an actual physical device such as network sniffers, that com- 

promises the integrity of a computer system, the action is called intrusion. In this paper, a short 

description of intrusion detection is given and several examples of intrusion are provided. A for- 

mal definition of intrusion detection and various methods, techniques and intrusion detection sys- 

tems (IDS) are described. The paper gives a formal description of an agent-based intrusion detec- 

tion where evolutionary based techniques are explored. Moreover, a detailed architecture for a 

coevolutionary agent based system is given and the concept of a super agent is described in de- 

tail. 

3.1. Introduction 

Perhaps the best way to describe the concept of intrusion in computer and network systems is by 

investigating intrusions in real life and make comparisons. The following is a fictitious example: 

Bob owns a small grocery store with two employees. Before he locks up, he activates the alarm 

and then heads home. The next day, when Bob opens his store, he realizes that the alarm has 

been deactivated and some items are missing from his store. Did an intrusion occur? Should Bob 

call the police? 
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To answer these questions, one must know Bob's policy and whether the confidentiality, integrity 

and availability of his security system and his store been compromised. If none of the store em- 

ployees have taken the items, then an intrusion has occurred. In addition, if they did not deacti- 

vate the alarm, then confidentiality of the alarm code has been compromised. Also, if there has 

been any damage to the alarm, the integrity and availability of the system has been compromised 

and an intrusion has occurred. However, if one of the store employees has deactivated the alarm, 

most likely no intrusion has occurred, this of course, depends on Bob's policy on whether the 

employees are allowed to deactivate the alarm and they can take any items with them or not! 

This simple scenario shows us that in any organization, including a computer system, one must 

define the policies that affect the confidentiality, integrity and availability of the information and 

resources to the organization or the computer system. A policy is defined as the set of laws, rules, 

and practices that regulate how an organization manages, protects and distributes sensitive in- 

formation [1]. To implement any security system, it is important to define a security policy for 

that system. A good and simple example of the security policy is the file access policy in a UNIX 

file system where permission for accessing a file is set by a user. A file access is defined as one 

of the read, write and execute actions and file access is limited to the user, his/her group, and 

everyone else. The file access policy is set by the user (owner) of the file. Any violation of the 

access policy is considered an intrusion. An intrusion can, therefore, be defined as any set of ac- 

tions that attempt to compromise the integrity, confidentiality and availability of a resource [2], 

in this case the file system. 

3.2 Intrusion Detection Techniques 

In this section a summary of definitions, principles and techniques for intrusion detection are 

given. An intrusion detection system (IDS) can be categorized as a pro-active or a reactive sys- 
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tem. Pro-active IDS systems are systems that actively, usually in real-time, enforce the security 

policy of the system. The enforcement is done at the time of any executed action. For example, if 

a user attempts to delete or alter a file he/she is not permitted to access to, he/she will be immedi- 

ately notified of the illegal action. Other examples include accessing resources such as printers, 

disks or network ports that are not allowed, exceeding a process priority levels beyond what is 

allowed, or running or executing processes that are not allowed. Pro-active systems have a set of 

rules that define the policy of the system. These rules are either built into the system (for exam- 

ple, Unix File security policies) or provided as an external set, such as expert systems, where the 

rules can be modified, added or deleted to adapt to changes in the system. 

A reactive system is a monitoring system that analyzes the user actions after they have been exe- 

cuted. In this sense, a reactive system is an offline process. A reactive system generally collects, 

analyzes and makes decision on whether an intrusion has occurred, after which the authorities are 

notified to take appropriate actions to stop the intrusion. 

Both pro-active and reactive systems provide advantages and disadvantages of their own. Pro- 

active systems are fast, execute in real time, and are easy to maintain and update the rules. Reac- 

tive systems have the advantage of discovering new intrusions (attacks) automatically, and utilize 

a great deal of available statistical information in the form of audit trail. 

Intrusions are typically divided into 6 categories [3]: 

1. Attempted break-ins, which are detected by atypical behavior profiles or violations of se- 

curity policies, 

2. Masquerade attacks, which are detected by atypical behavior profiles or violations of se- 

curity, 
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3. Penetration of the security control system, which are detected by monitoring for specific 

patterns, 

4. Leakage, which is detected by atypical use of system resources, 

5. Denial of service, which is detected by atypical use of system resources, 

6. Malicious use, which is detected by atypical behavior profiles, violations of security con- 

straints, or use of special privileges. 

The techniques to detect the type of intrusions mentioned above, fall into two general types, Mis- 

use detection and Anomaly detection. 

3.2.1 Misuse Detection 

Methods that fall under the category of misuse detection directly encode the knowledge about the 

attacks. This encoding is in the form of patterns or well-defined rules that describe vulnerability 

of certain aspect of the system. For example, exploitation of the finger and sendmail bugs that are 

used in the Internet worm attack and their consequent expected behavior can be represented in a 

knowledge base. The knowledge base can be examined for appropriate bugs and their behaviors 

and appropriate action can be taken. There are 4 approaches to Misuse detection, 1) Expert Sys- 

tems, 2) Key Stroke Monitoring, 3) Model-based Intrusion Detection, and 4) State Transition 

Analysis. 

3.2.1 Expert Systems: These are computing systems that represent and reason about knowledge 

in a certain domain. The attacks are usually coded as if-then rules in the knowledge base where 

certain conditions in the if part of the rule must be satisfied before an action in the then part is 

triggered. In another words, expert systems are modeled in such a way as to separate the rule- 

matching phase from the action phase. In this way, the control reasoning is separated from the 
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formulation of the problem solution. Its use is mainly deduction of the occurrence of an intrusion 

based on the knowledge or available data. The main advantages of the expert systems are the 

separation of the rules from the actions and easy upgradeability of the rules as new intrusions are 

discovered. Chief among the main disadvantages of expert systems is the knowledge base itself, 

which can only be as good as the expert that designs it. If an expert misses encoding certain in- 

trusions, those intrusions can never be detected; moreover, other issues such as maintaining the 

knowledge base and the quality of the rules become major software engineering problems. 

3.2.2 Model Based Systems: They combine models [4] of misuse with evidential reasoning to 

support conclusions about its occurrence. This approach states that certain scenarios are inferred 

by certain other observable activities. If these activities are monitored, it is possible to find intru- 

sion attempts by looking at activities that infer a certain intrusion scenario. The model based in- 

trusion detection has three important modules [4]: 

a) The anticipator - the purpose of this module is to try to predict the next step in the sce- 

nario that is expected to occur. This module uses active and scenario models. A scenario 

model is a knowledge base with specifications of intrusion scenarios. 

b) The planner - the purpose of the planner is to translate the hypothesis formed by the an- 

ticipator into a format that shows the behavior, as it would occur in the audit trail. It uses 

the predicted information to plan what to search for next. 

c) The interpreter - the purpose of the interpreter is to search for the data generated by the 

planner in the audit trail. 
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The system continually accumulates audit data and evidence until a threshold has been met; at 

which point, a signal indicates that an intrusion has occurred. Because the planner and the inter- 

preter know what they are searching for at each step, the large amounts of noise present in audit 

data can be filtered, leading to performance improvements. Since the system can predict the at- 

tacker's next move based on its model, these predictions can be used to verify an intrusion hy- 

pothesis, to take preventive measures, or to determine what data to look for. Despite these advan- 

tages, some of the major disadvantages of such systems are: 1) patterns of intrusions must be 

identified and recognized, 2) if a certain scenario/behavior is being tested, the pattern associated 

with that scenario must occur, and 3) intrusion pattern must be easily distinguishable from those 

of the normal patterns. 

3.2.3 State Transition Analysis: These technique represents the monitored system as a state 

transition [5]. A system state represents a state in the attack pattern. The states are connected 

through transitions that occur according to Boolean assertions at the state node. An intrusion oc- 

curs when the system goes from a safe state to an unsafe state. In this manner, a state transition 

diagram represents safe vs. intrusive activities/behaviors. An advantage of this model is that it 

can detect attacks that can span across multiple user sessions. A disadvantage of this technique is 

that it cannot detect certain attacks such as denial of service attacks, failed logins, and passive 

listening because they are either not recorded by the audit trail or cannot be represented by the 

state transition diagram. Furthermore, attack patterns can specify only a sequence of events, 

rather than more complex forms. 
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3.2.4 Keystroke Monitoring: As its name implies, this techqnique monitors and searches for 

certain keystroke patterns. The advantage of this technique is its simplicity; unfortunately there 

are a myriad ways of implementing intrusions using different keystrokes. In addition, certain fea- 

tures in some Unix shells such as aliases also defeat this technique. 

3.3 Anomaly Detection 

The techniques falling under the anomaly detection types of intrusion detection systems assume 

that activities due to intrusions are different from that of system's normal behavior. If a profile of 

the normal system behavior can be established, it should at least be theoretically possible to find 

abnormalities that manifest themselves as deviations from the normal behavior. Some of the 

techniques for anomaly detection are: 

1. Statistical based: In these approaches [6, 7, 16] a set of measures are derived to for exam- 

ple profile behavior of subjects. If there exists a sufficient variance in the present profile from 

that of original profile, an intrusion is likely occurred. One of the advantages of this tech- 

nique is that it can potentially actively learn the behavior of users and it is more sensitive than 

the human experts. 

2. Predictive pattern generation: This method [8, 9] of intrusion detection tries to predict 

future events based on the events that have already occurred. This is usually formed by a rule 

based sequential patterns. In this approach, rules for intrusion patterns are given as events 

with probabilities. For example a rule may specify that if a certain number of events Ei..E„ 

have occurred then a number of possible events En+i .. Ek each with a different probability 

could occur.   This approach can detect anomalous activities that are difficult with traditional 
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methods and is highly adaptive to changes; however, if the intrusion scenarios are not de- 

scribed by the rules, they will not be flagged intrusive. 

3. Neural Networks: A neural network [4, 10] is trained on typical sets of commands entered 

by a user. Once the network is trained, it is presented with user command profiles already 

captured. The neural network is then used to detect deviations in the user profile from that of 

the trained scenario. Some of the advantages of this approach are that it copes well with noisy 

data, its success does not depend on any statistical assumptions about the nature of the under- 

lying data, and it can be modified easily with the new user community. The disadvantages are 

that the window size for training (or testing) may result in false positives or false negatives 

and the network topology is determined after many testing and trials. 

Since all anomaly detection methods rely on profiling and learning normal behaviors in order to 

distinguish deviation from it, almost all outlier detection schemes such as nearest neighbor ap- 

proaches [11, 12, 13, 14], density based techniques [15], and clustering based techniques [16] are 

viable approaches. 

3.4 Autonomous Agents for Intrusion Detection 

One interesting approach that has been pursued by researchers at Purdue University is the idea of 

a distributed IDS system (vs. a single large monolithic IDS) [17]. They introduce the concept of 

autonomous agents for EDS where an agent is defined as a system that tries to fulfill a set of goals 

in a complex dynamic environment. In the context of an IDS system, the agent is a detector for 

anomalous behavior in a computer system; therefore, an agent is an IDS system itself. Advan- 

tages of such an approach are many including efficiency, fault tolerance, resilience to degrada- 

tion, extensibility, and scalability. The agents are software programs that are automatically gen- 

erated and maintained by the system. Since the agents are autonomous, many of them can exist 
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simultaneously. This results in fault tolerance where if one or more agents are for one reason or 

another disrupted, others continue to monitor for intrusions. Moreover, agents can potentially be 

specialized to audit certain aspect of the system. For example, an agent can be trained for In- 

put/Output activities, another for Network Activities and yet another for process resource alloca- 

tion activities and so on. In [17] a simple agent-based model is provided for intrusion detection 

and intrusion detection is viewed as anomaly detection. Since the idea of the approach described 

in this report has the same spirit with the agent based IDS described in [17], this system is ex- 

plained in more details. 

The system proposed in [17] is an agent-based system where an agent is a lightweight program 

that observes only one aspect of the overall system. Agents can be developed to inspect a particu- 

lar aspect of the system. For example, an agent can monitor the network, another inspect the CPU 

utilization, another for I/O, etc. The architecture of the agent based IDS is depicted in Figure 1. 
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User level gets suspicion 
report 

Upper MUX-combines suspicion reports 

lower Router- routers data to the Agents 

Kernel adit data 

Figure 1. Overall Agent-based IDS architecture proposed in [17]. 

The input to the system is audit data. This data can come from a variety of places for example, 

web log files, process tables, TCP/IP, kernel memory traces, user profiles, and so on. The raw 

audit data is first scanned and usually parsed and decoded for input to the agent code. Each agent 

performs its computation and then reports a suspicion value. The suspicion values of all agents 

are gathered (multiplexed) and a final suspicion report is generated. This report can then be 

evaluated by the system administrator or security officer. The core of this architecture relies on 

the generation of the agent code. Note that Figure 1 does not specify how the agent codes (indi- 

cated by circles, I/O, NFS, TCP) are designed. One obvious approach is to replace these agent 

codes with that of a human expert. The advantage of human-based agent design is the efficiency 
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in the code design, and the bias and expertise that the human designer introduces in the agent 

code. On the other hand, although the code design and actually implementation might be effi- 

cient, implementing changes, for example, due to new modes of attack might be cumbersome and 

error prone by the human designer. In addition, the expert's bias in designing the agent then fixes 

the behavior of the agent, the agent will be as good as its designer. Moreover, designing agent 

code is not a trivial task and may require enoromous amount of testing and interaction with the 

computing system before a useful agent is designed and trained. 

The agent design can be automated. The automation requires a set of metrics that can abstract the 

system operation. The metrics can be computed from a set of parameters such as CPU utilization, 

number of TCP packets, IP addresses, number of connections, and so on. These parameters must 

encapsulate important and relevant information that can be useful for detecting anomalous be- 

haviors. 

An agent can be viewed as a program or process that utilizes metrics to detect anomalous behav- 

ior. Once the metrics are defined, and the training scenarios are available, agent codes can be 

automatically constructed and verified. One such method of constructing agents capable of learn- 

ing is through evolutionary methods such as genetic algorithms, or genetic programming. In the 

following sections, several metrics are introduced. These metrics are utilized to efficiently con- 

struct agent codes. Moreover, the idea of a constructing a super agent through coevolution and its 

efficacy is described. 

3.4.1 Genetic Programming and Coevolution: One can view an agent (a program code) 

as a solution to a search problem. The search problem is to find a good (hopefully the best) pro- 

gram among all possible programs that can detect an attack. A computer code can be viewed as a 
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point entity in a multidimensional domain, where each dimension is a primitive describing part 

of the agent's language. 

Example: Assume our language is very limited and contains only conditional statement if-then, 

conditional operators (<, >, and =), logical operators {and, or), and operator action(). Although 

these primitives might be too limited to be expressive for a computer language, most production 

systems require very limited number of primitives such as the ones given above. The following 

codes are examples of statements in our hypothetical language: 

(a) If X >2000 then action(STOP_CONNECTION); 

(b) If X<2000 and X>100 then action(ALERT_USER); 

(c) If Y=1493 or Y=197 then action(CLOSE_PORT); 

If X represents number of TCP connections and Y represents port numbers, then the first two 

statements are programs that check for number of TCP connections and the third statement may 

be a program that checks for access to a particular port. 

Generally, programs are a set of statements that can be represented as multiple parse trees. A 

parse tree is a tree with nodes representing operators/primitives and each parse tree can represent 

a statement as the example given above. A list of parse trees (statements) represents a program; 

therefore, a program can be as small as a single parse tree or multiple parse trees. For the exam- 

ple above the three statements can be represented by the parse trees given in Figure 2. 

Finding such parse trees that can represent useful rules for detecting anomalous behaviors or 

IDS, is a hard problem. This is mainly due to the unlimited number of possible combinations of 

codes that can be generated. An efficient search paradigm that is useful for such huge search 

spaces is based on evolutionary processes such as genetic algorithms (GA) and genetic program- 

ming (GP). 
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(a) 
2000 X 100    Y 1493 Y 

(b) (c) 

Figure 2. Parse trees corresponding to the example (a), (b) and (c) respectively. 

In a typical GA the solution to a problem is encoded in each individual representation. A popula- 

tion of these individuals is randomly created. This population represents the location of individu- 

als in the search space. An evaluation function (fitness function) that plays the role of the envi- 

ronment, rating individuals in terms of their fitness, is defined. The fitness function is used to 

rank individuals in the population. To continue exploring the search space, new populations are 

generated where individuals in the new population are selected based on the performance of their 

predecessors. In other words, solutions that have higher fitness value (e.g., better representations) 

are given more chance of being propagated in the next generation. In order to explore this search 

space more effectively, randomization is introduced in the selection of the individuals. There are 

two main operators for this randomization, referred to as crossover and mutation. Crossover is an 

operation where two individuals swap portions of their representation in random, effectively cre- 

ating new offspring (solutions) encoding part of their parents (old solutions). Mutation is an op- 

erator that randomly, usually with low probability, changes a representation, for example, flip- 

ping a bit in a bit string. By applying the crossover, mutation and selection operators, the GA ef- 

fectively explores the search space in a parallel fashion. 
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The operation in GP is identical to that of GA, that is operations crossover, mutation, and selec- 

tion are performed similarly. The main difference between a GP and GA is that in the GA the 

solution (or search space) is encoded as bit strings whereas in GP the solution is encoded as pro- 

grams, which are codes normally represented as parse trees1. The genetic operators are then 

modified to swap portions of parse tree (subtrees) for crossover, and changing a node for muta- 

tion. 

Another recent evolutionary, GA-like, algorithm is the Cooperative Coevolution (CC) [19]. Like 

the GA or GP algorithm, the CC algorithm explores the solution space in a random fashion. As in 

GA, the CC algorithm applies the operators crossover, mutation, and selection to generate poten- 

tial solutions. However, in CC, the representation of a solution is broken down into sub-parts, 

each of which encodes part of the solution and is evolved separately. Therefore, sub-populations 

are generated and maintained in each generation of the CC algorithm. In this manner, the oppor- 

tunities for searching and exploring different solution subspaces are increased. 

By comparing the algorithms in Figure 3, it is clear that the major difference between these two 

models lies in how the evaluation of individuals is performed. As stated earlier the evaluation in 

the GA model is performed on an individual (as a whole) in a population; on the other hand, in 

the CC model, individuals from separate sub-populations must come together to create an "or- 

ganism" that is viewed as the solution. Hence, in the CC model, an individual cannot provide a 

meaningful solution to the problem and requires the cooperation of individuals from other sub- 

populations. 

1 Other representations such as graphs and Lists are also possible for GP's. 
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Procedure GA_GP() 
initialize population 
loop 

evaluate individuals 
store best individual 

select mating candidates 
recombine parents and use their 
offspring as the next generation 

until stopping condition 

return best individual 

Procedure CC_GP() 
initialize subpopulations 
loop 
evaluate organisms (solutions) 
store best organism 
for each subpopulation 

select mating candidates 
recombine parents and use their 
offspring as the next generation 

endfor 
until stopping condition 
return best organism 

Figure 3. Comparing a typical GA and CC algorithm. 

The success of CC depends on 4 criteria: (a) Problem decomposition, (b) Interdependability, (c) 

Credit assignment, and (d) Population diversity. These criteria are described in the following sec- 

tion when the concept of super agent will be discussed. 

4.2 Agents and Super-Agents 

In order to evolve useful programs, programs that can detect anomalies and act as an IDS, we 

must define how an agent is constructed first. As mentioned earlier, an agent is a code fragment, 

possibly a program. A suitable evolutionary model for evolving programs is GP. GP alone can be 

used to create IDS codes or agents. An advantage of applying GP to create IDS agents is that in 

this paradigm the agents can be adaptable to new, unseen intrusions, one only needs to train new 

agents, once a new intrusion occurs. Because so many agents can exist, possibly in parallel, this 

provides a distributed environment where fault tolerance is inherent. In addition, the audit trail 

generates a great amount of data that can be utilized for both training and testing the agents. Al- 

though these advantages make the GP-only based IDS a very attractive and viable approach, it 
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does have two major shortcomings, 1) there are no interactions between agents, 2) this approach 

fails to treat security as a system wide problem. 

As indicated in Figure 1 agents are combined through a multiplexer; this interaction at the level 

of the multiplexer is a predefined design, which requires human input and bias and once the mul- 

tiplexing criterion is selected, it remains static throughout the lifetime of the IDS system. More- 

over, because an agent is evolved separately, and as a whole, different runs of the GP do not 

guarantee achieving separate agents that may detect anomalous behavior significantly better than 

each other. 

To overcome these problems, a new type of agent, Super Agent, is introduced, see Figure 4 and 

Figure 5. Just like the agent described earlier, a super agent is an agent that is made of many 

mini-agents. A mini-agent or simply an agent, is a simple function or routine that evolves. An 

ADF is an automatically defined function, it is essentially a subroutine that is evolved separately 

from a parent tree, this enables the generation of type-safe parse. A simple function itself may or 

may not be a solution but many functions together construct a full program that acts as the IDS 

system. Therefore a super agent is a fully functional program made of several functions or sub- 

routines. By providing the concept of the super-agent and decomposing the problem into mini 

agents, we have met the first criteria for applying the cooperative coevolutionary method for con- 

structing an IDS system. The other criteria's are also met as follows: 

(a) our representation, single Automatic Defined Functions ADFs, provides interdependencies 

between subcomponents, 

(b) the objective or fitness function to evaluate each ADF is the suspicion value each super agent 

evaluates to. 

(c) population diversity can be maintained by roulette wheel selection method. 
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Super Agents 
Organisms 

(solution space) 

Agents (1) 
subpopulation #1 

Agents (2) 
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ADFs 

individual to be evaluated 

representa- 
tive 

organism composed of the indi- 
vidual to be evaluated and the 
representatives from the remain- 
ing subpopulations 

® \ "S 

Agents (3) 
subpopulation 

#3 

Figure 4. A graphical example of a super agent formed by evolving individual agents. Note that each agent is 
defined as an Automatic Defined Function or ADF. 

SUPER-AGENT 

ADF; 
mini-agent 1 

(population 1] 

ADF2 
mini-agent 2 

(population 2) 

I ADF3 
mini-agent 3 

(population 3) 

.ADFn 
mini-agent n 

(population n) 

Figure 5. A super agent (an IDS system) is made of many mini-agents (e.g., standalone functions). 
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An important part of the evolutionary algorithm is the evaluation function, referred to as the fit- 

ness function. A suitable fitness function must be provided that enables the search process to 

continue in the direction of a suboptimal solution. The fitness function for the agent code is 

given as follows. First we define a suspicion value as the value reported by the super-agent as 

how suspicious the activity under investigation is. For a given scenario, the absolute difference 

between the super agent's reported suspicion and the scenario's outcome is the fitness function as 

follows: 

S = \outcome - suspicion\ 

where 8 is the absolute difference between the agent's reported suspicion and the scenario's out- 

come. The smaller the 8, the better the agent has predicted the outcome. For a set of n training 

scenarios, the fitness is: 

n 

fitness = —— 
n 

The agent with the lowest fitness value is selected for next generation. Once the evolution is 

stopped (e.g., after a number of iterations, or achieving certain fitness value), the best mini- 

agents (functions) are selected and combined to create the super-agent. 

3.4.3 Metrics - Features: Two types of intrusions may occur in a computer system, one that is 

initiated from outside the computer and requires a network or other form of connection and the 

other initiated internally where, for example, a user consciously or unconsciously may affect the 

confidentiality, integrity or availability of information and resources of the computer. In either 

case, we assume that audit trails are in place where a snap shot of the computer system is stored. 

An audit trail is a log file generated by a specific program such as tcpdump or weblog, which 
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monitor TCP (Transmission Control Protocol) connection or web-accesses respectively. Variety 

of programs for generating audit trails exists [20, 21]. Since majority of intrusions are initiated 

externally, we focus on the network intrusions where a user must first gain access to the re- 

sources or the computer on a remote location through a network connection. As mentioned ear- 

lier, tcpdump is the tool of choice. Tcpdump operates in the following layers: 

Application: tcpdump analyzes application level protocols such as NFS, Telnet, FTP , Samba 

and others. 

Transport: tcpdump intercepts and analyzes TCP and UDP packets. 

Internet: tcpdump intercepts and analyzes ICMP packets. 

Network Access: tcpdump can intercept and analyze many network level protocols such as ARP 

which is an Ethernet protocol. 

Source Address Destination IP 
,..     ^ IP and Port ana Port 
Time Stamp , x 

^-v A *'——* 
10:28:56.513981 IP unknown.astraweb.com.nntp > 192.168.0.144.49173:.: 
226958:228406(1448): ack 17 Win 17376 <nop,nop,timestamp 655588787 3689596> 

v« 
> Y '     • x ^ 

JQP     "Ack" the Next    \ Options 
Sequence    Sequence        Window 
Numbers      Number 

Expected 
Figure 6. Example of a TCPDUMP outputline. 

Examples of misue by layers are given as follows: 
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Application: Monitoring the Application Layer can expose suspicious or unwanted use of Net- 

work Services, Instant Messengers, P2P programs, or vulnerabilities in applications. 

Transport: Manipulation of TCP/UDP packets can be used to DOS networks (Denial of Ser- 

vice). 

Internet: ICMP Packets can be employed to DOS a machine by requesting connections rapidly, 

overwhelming the resources of the target machine. 

Network Access: Switches can be flooded with fake MAC address announcements overwhelm- 

ing their resources, and forcing them to revert to hub mode - making their traffic easy to inter- 

cept. 

Tcpdump outputs lines of human readable text, which represent the TCP (Transport Control Pro- 

tocol) header, see Figure 6. 

Utilizing the tcpdump format, we obtain a wealth of features. The features are described in de- 

tails in Appendix A. 

3.4.4 System Architecture: Figure 7 describes the system architecture for the super-agent. The 

system uses the audit trail data from the TCPDUMP data (see Figure 6). The audit trail can be 

tailored to specific system component, for example if web-access is of interest, the audit data can 

come from a web-log, or if user behavior is being tracked, a user profile can supply the audit 

trail. The data is in raw format and it must be parsed and appropriate features extracted from it. 

Once the features are derived, the abstraction layer must parse the features for the appropriate 

types. Each ADF is a specific subroutine, a function that operates on a specific data type. The 

number of ADF's (or agents) to use is of particular interest. One can apply n features to the sys- 

tem, requiring n agents to be evolved; however, it may be more efficient to apply a subset of fea- 
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tures so that Super agents can be specialized for a certain task. For example, if port-scanning in- 

trusion is to be detected, then the count features can be utilized (see next section for the features). 

The CC-GP module initializes the agents and through the evolutionary process described in Fig- 

ure 3, and Figure 4, evolves the agents. The final result is a linear combination of these agents 

which form a program containing several functions (more specific, function calls). The super 

agent is then input to a production system on the computer. As the audit trails are gathered and 

the super agent is performing its task, new audit trails generated can be used to update or create 

new super agents. The feedback from the computer system enables the super agents to deal with 

new threats. If a threat has been missed, the agents can evolve again based on the new audit trail 

information (training data). If a new threat has been assessed and the agents have been unable to 

detect it, a new super agent can be evolved. 

The window size in the Feature derivation also plays an important role. The window size assures 

the granularity of the agents is preserved. For example, a port scan attack can be a burst attack in 

which a port scanner attempts to quickly scan the system ports or it can be more methodical and 

distributed where a port scan can occur over a long period of time. In this manner, unless an IDS 

has long term planning, it will not be able to detect such attacks. In our architecture we can track 

several window sizes of seconds to hours and days; therefore, potentially updating different 

agents. 
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Figure 7. System Architecture: Input from the Audit Trail disseminates to the CC-GP module for evolving 
agents and super agents. 
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3.5 Features Derived from TCPDUMP Audit Trail 

Terminology 

Window 

Count 

Density 

Rate 

Feature Types 

Port 

Time 

J-tsource 

IPdest 

A unit of time in which events are grouped together for analysis. 

Number of times an event occurs per unit time (Window) 

The percentage of a whole a certain set of events represents. 

Rate of change of a feature 

is a number assigned to a process or service type. Type: Integer 

is the time given in Hour:Min:Sec.Fraction of a second 

The IP address of the source 

The IP address of the destination 

Packet Type: identifies the type of protocol used for the packet, values include: UDP, TCP, 

ARP, ICMP. Other values are possible and are enumerated in the ip(4) man page, however the 

aforementioned packet types are adequate to begin. In the future we will consider protocol ana- 

lyzers as well. 

Flags: indicates situation for connection, only valid for TCP packets: 

S 

ACK 

f(Fin) 

r (Reset) 

p (Push) 

urg (Urgent) 

Syn Packet, host wishes to establish connection. 

Host acknowledges having received data. 

Sender intends to close connection 

Sender aborts connection immediately 

Sender sends data immediately. 

Packet has high priority. 
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Derived Features: The following are features based on the individual fields in TCPDump. Each 

feature is precisely defined. The values from all these features can be derived from the 

TCPDump file. Some features are time based and require a window (time frame). The resolution 

of this window will be decided later but some suggestions are window of a minute, hour, day, 

week and month size. Having different window sizes can help in detecting distributed attacks. 

Basically a window can be 1 minute, 10 minutes, 2 hours, 1 day, 1 week, etc. In this manner each 

window can be considered as a feature, for example, short-term features vs. long-term features. 

"Count" Features: Count the occurrence of a specific event. 

Type: Unsigned integer 

Fxample: 

Time (window=l) IP Address Count 

09-10-2004 12:01:01 66.33.12.14 1118 

09-10-2004 12:01:02 66.33.12.14 2312 

09-10-2004 12:01:02 
j 

38.72.142.1 1942 

... • • • ... 

IP Count 

Definition: Given an EP address (of the form xxx.xxx.xxx.xxx, where 0 < xxx < 255 is a one 

byte integer), the IP Count, measures how many times an IP address has occurred per WINDOW. 

(NOTE: Source and Destination can be treated äs different features). 

60 



Port Count 

Definition: How many times a particular port (e.g., ssh=22) was accessed per WINDOW. There 

are currently 65536 ports to be scanned. A list of important or active ports can be maintained so 

calculating the value for this feature can be done more efficiently. 

Packet Type Count 

Definition: This is the number of times a particular packet type (see packet types in TCPDump) 

shows up within a WINDOW time frame. 

Event Count 

Definition: How many TCPDUMP events occur per window. 

"Unique Count" Features 

Unique Count features are counts of unique events. 

Type: unsigned integer 

Example: 

Time Count 

09-10-2004 12:01:01 25 

09-10-2004 12:01:02 27 

09-10-2004 12:01:03 22 

... ... 

Unique Ports Count 

Definition: Describes how many different ports are accessed per WINDOW. (For example, if 

within 1 minute WINDOW, ports 11, 22, and 25 are the only ports accessed the value for this 

feature will be 3). 
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Unique IP Count 

Definition: Describes how many different IP's are accessed per WINDOW. (For example, if IP: 

127.27.63.1 and 64.68.127.1  are the only IP's appeared within a window, then the value of this 

feature will be 2) 

"Density" Features 

Density features track the percentage of a WHOLE for each component of a count feature. 

Type: Multiple floats 

Example: 

■ ■^     4 
12:00 w      ^ BTCP 

■ UDP 

DICMP 

^HHKfl V                *4 
12:01 r       m 

F=^^M_, 
■      1 

'                    ■<! 12.-02 $ 

0% 50% 100% 

Packet Density 

Definition: Percentages of all packets received per window of a certain type. 

IP Density 

Definition: Percentages of all packets received by a certain IP. 

Port Density 

Definition: Percentages of all packets addressed to or from a certain IP. 
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Flags Density 

Definition: Percentages of all packets received containing flags. 

"Density Rate" Features 

A quantification of the rate of change of a particular density feature. It is alculated by: 

X2-X1 
Window 

Type: Multiple Float Representing Percentages 

Example: 

100 

80 

60 

40 

20 

0 *=»^^SH 
12:00    12:01    12:02 

Packet Density Rate 

Definition: Rate of change of each component of the Packet Density. 

IP Density Rate 

Definition: Rate of change of each component of the IP Density. 

Port Density Rate 

Definition: Rate of change of each component of the Port Density. 

Flags Density Rate 

Definition: Rate of change of each component of the Flags Density. 
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Methods for Calculating Window Count Rate 

Terminology: 

Dictionary      - Allows one to associate an object with another. Also called: Map, andAssocia 
tive Array 

Key - An object used to retrieve another in 
List - An extensible array 
Bucket - A data structure (on our case a list) which similar items are grouped into. 

Proposed data structure: A dictionary of lists. Events are stored in "buckets " (lists) which are 

associated in a dictionary to a key which takes the form of a string literal "DATE, TIME" where 

DATE or TIME are rounded to the WINDOW size. For instance: in a 5 minute window the Keys 

would look like: 

"10-10-2004, 12:00:00" 
"10-10-2004, 12:05:00" 
"10-10-2004, 12:10:00" 
A 24 hour window: 
"10-10-2004, 00:00:00" 
"10-11-2004, 00:00:00" 
"10-12-2004, 00:00:00" 
Keys can be associated with either lists of events that fall into that bucket (very expensive RAM 

use) from which statistics can be generated. Or more likely, statistics will be generated from data 

as it is received, and data structures which represent this aggregated data will be stored (pro: effi- 

cient RAM use, con: can't query individual events). 

3.6 Conclusions 

Intrusion detection remains a challenging problem in the computer security domain. Several dif- 

ferent approaches for misuse and anomaly detection have been proposed; however, as attacks be- 

come more sophisticated and distributed, more lightweight and distributed detection systems are 

necessary for tracking intruders. An evolutionary based agent oriented IDS system was intro- 
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duced. The architecture described is capable of adapting to new treats. The features derived also 

enable the system to track both short term and long-term intrusions. This capability is extremely 

important in today's computer security problem since more sophisticated attacks occur over 

longer periods of time; therefore, distinguishing them from the normal behavior of the system 

becomes a very challenging problem. 

The system above is currently being constructed as a research testbed. For future research in this 

area, topics of interest include feature selection, frequency of agent update, the interaction of su- 

per agents in a large scale system, and parallelization of the architecture. 
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APPENDIX A 

APPENDIX A 

This appendix summarizes useful links, research and commercial IDS systems. 

Links of interest 
IDS Buyers Guide (sponsored by industry): 
http://www.ipa.go.jp/securitv/fvll/report/contents/intrusion/ids-meeting/idsbg.pdf 
Cert Intrusion Detection Checklist: 
http://www.cert.org/tech tips/intruder detection checklist.html 
Center for Research in Information Security 
http://www.cerias.purdue.edu/research/ 
http://www.cerias.purdue.edu/about/history/coast resources/intrusion detection/ 
Introduction to Distributed IDS: 
http://www.securitvfocus.com/infocus/153 
Attack Signature Database: 
http://www.whitehats.com/ids/ 
Paper: Data Mining Approaches for Intrusion Detection 
http://wwwl.cs.columbia.edu/~sal/hpapers/USENIX/usenix.html 
List of IDS papers: 
http://www.cc.gatech.edu/~wenke/ids-readings.html 
Paper comparing GP to other IDS methods: 
http://www-2.cs.cmu.edu/~cheeko/intrusion/ 
An intelligent host based IDS 
http://people.roqe.org/kr/docs/ml-ids-talk.pdf 
Intrusion Detection 
In this project we investigate learning (data mining) techniques for building models that can detect intrusions. To 
detect unseen attacks, we currently focus on anomaly detection. Our models are built based on data gathered from 
the network and operating systems. We have audit data provided by DARPA that contain normal and attack activi- 
ties. Long-term goals include cost-sensitive modeling and correlation among distibuted models. 
http ://cs.fit.edu/~pkc/id/ 

Key 

[C] Commercial Product 
[O] Open Source Product 
[R] Research Product 
[F] Features 
[D] Datasheet 
[H] Homepage 
[M] Comments 
[P]      Synopsis Provided by website 
[HAR] Hardware Based 
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[SOF] Software Based 
[NET] Network Sniffing Based IDS 
[LOG] Log Based IDS 
[STA] Statsistical Based 
[SIG]  Signature Based 
[DIS]  Distributed IDS 

[C] NFR Intellgient IDS [NET] [LOG] [SIG] 
TH1 http://www.nfr.com/solutions/svstem.php 
[P] With NFR, you get a uniquely clear and precise view of suspicious activity on your network. 
A combination of pattern matching and anomaly detection identifies both known and unknown 
types of attacks. Customization and fine-tuning enables you to detect "real attacks" and minimize 
distracting false positives. Comprehensive reporting and analysis tools help you to prepare for a 
future attack, or prepare for criminal proceedings. 
[M] Claims to be a learning IDS but features indicates signature only. 

[C] Still Secure BorderGuard [NET] [HAR] [SIG] 
[HI http://www.stillsecure.com/products/bg/index.php 
[Dl http://www.stillsecure.com/docs/StillSecure BG datasheet.pdf 
[M] Seems unremarkable, no mention of any technology used, just vague references to learning 
abilities. 

[C] Mcafee Intrushield [NET] [SIG] 
[H1http://www.anidirect.conVproducts/intrusionprevention/networkintrusion.html 
[Dl http://www.anidirect.com/products/intrusionprevention/ds intrushieldidssensor.pdf 
[M] Hardware based, signature based IDS. 

[O] Prelude [NET] [LOG] [SIG] 
[HI http://www.prelude-ids.org/index.php3 
[Fl http://www.prelude-ids.org/rubrique.php37id rubrique=24 
[M] GPL'd signature based software IDS, extensible, capable of monitoring wide range of hard- 
ware/software products such as WWW, SQL, FTP servers and router logs. 

[R] Columbia IDS [NET] [DIS] 
[H] http://wwwl.cs.columbia.edu/ids/ 
[P] This project is a data-mining based approach to detecting intruders in computer systems. The 
project approaches the intrusion detection problem from a data-mining perspective. Large quanti- 
ties of data are collected from the system and analyzed to build models of normal behavior and 
intrusion behavior. These models are evaluated on data collected in real time to detect intruders. 
[M] Seems to monitor network and machine activity, including filesystem data and registry activ- 
ity (trivial), however web pages haven't been updated in two years and no source code or project 
status is available. Has nice publications list at: http://wwwl.cs.columbia.edu/ids/librarv/ 

[O] Firestorm IDS 
TH1 http://www.scaramanga.co.uk/firestorm/index.html 
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[M] Open source NEDS, only sensors so far, no analysis 

[O] SED [HOS] 
TH1 http://sid.sourceforge.net/ 
[P] Shell/PTY Intrusion Detection: Aims at detecting unwanted PTY action on UNIX systems. 
SED-EDS is a Host Intrusion Detection System. Consists of a kernel part and a user part. The 
kernel part plugs into terminal processing subsystem and logs hashed terminal lines. The user 
part reads log entries (hashes) and takes appropriate action upon finding unexpected log entries. 
[M] Contains examples of shell monitoring! 

[O] Snort [NET][SIG] 
[HI http://www.snort.org/ 
[M] Signature Database: http://www.snort.org/snort-db/ 
[M] EDS Resources: http://www.snort.org/docs/ 

[O] LEDS [HOS] 
[H] http://www.lids.org/ 
[P] The Linux Intrusion Defence System (LEDS) is a kernel patch and admin tools which en- 
hances the kernel's security by implementing Mandatory Access Control (MAC). When it is in 
effect, chosen file access, all system network administration operations, any capability use, raw 
device, memory, and I/O access can be made impossible even for root. You can define which 
programs can access specific files. It uses and extends the system capabilities bounding set to 
control the whole system and adds some network and filesystem security features to the kernel to 
enhance the security. You can finely tune the security protections online, hide sensitive proc- 
esses, receive security alerts through the network, and more. LEDS currently support kernel 2.6. 
1A. LEDS is released under GPL. 
[M] Very interesting idea, doesn't seem to be an EDS except that it can report abuse 

[C] Cisco EDS [SIG][NET] 
[H] http://www.cisco.eom/warp/public/cc/pd/sasw/sqids7./ 
[M] Unremakrable network EDS 

[C] Next-Generation Intrusion Detection Expert System (NEDES) [SIG] [HOS] 
[HI http://www.sdl.sri.com/proiects/nides/whatisnides.html 
[P] NEDES performs two types of analysis. Its statistical analysis maintains historical statistical 
profiles for each user and raises an alarm when observed activity departs from established pat- 
terns of use for an individual. The historical profiles are updated regularly, and older data "aged" 
out with each profile update, so that NEDES adaptively learns what to expect from each user. 
This type of analysis is intended to detect intruders masquerading as legitimate users. Statistical 
analysis may also detect intruders who exploit previously unknown vulnerabilities who could not 
be detected by any other means. Statistical anomaly detection can also turn up interesting and 
unusual events that could lead to security-relevant discoveries upon investigation by a security 
officer. The statistical analysis is customizable: several parameters and thresholds can be 
changed from their default values, and specific intrusion-detection "measures" (the aspects of 
behavior for which statistics are kept) can be turned on or off. 
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[R] MADS: Mobile Agent Intrusion Detection System 
[P] Feature Selection Using a Genetic Algorithm for Intrusion Detection (postscript) (full cita- 
tion) 
TH1 http://latte.cs.iastate.edu/Research/Intrusion/ 
[M] Research IDS 

[R] AFEDS Autonomous Agents for Intrusion Detection 
TH1 http://www.cerias.purdue.edu/about/history/coast/proiects/aafid.php 
[M] A library for sensor construction 

[R] Machine Learning for Intrusion Detection 
["HI http://ida.first.fhg.de/proiects/mind/mind official/ 
TM1 research project with no Online Documentation Whatsoever 

fRI MINDS - Minnesota Intrusion Detection System 
TH1 http://www.cs.umn.edu/research/minds/ 
[P] The overall objective of this research is to develop high performance data mining algorithms 
and tools that will provide support required to analyze the massive data sets generated by various 
processes that monitor computing and information systems. This research is being conducted as a 
part of MINDS (Minnesota Intrusion Detection System) project that is developing a suite of data 
mining techniques to automatically detect attacks against computer networks and systems. 

[R] A Data Mining Approach for Building Cost-sensitive and Light Intrusion Detection Models 
TH1 http://www.cc. gatech.edu/~wenke/proiect/id.html 
[M] Attackers can use automated scripts to generate a very high volume of intrusions to over- 
whelm an IDS and its operational staff, and then launch the intended and more serious attacks 
which may now go undetected. The limited time and resources therefore need to be focused on 
detecting the most damaging intrusions. In other words, a high statistical accuracy should not be 
the main goal of an IDS; rather, the more important goal should be the maximum reduction in 
intrusion damage cost with minimum IDS operational cost. The objective of this project is to 
study the theoretical foundations and the development approaches for cost-sensitive intrusion de- 
tection systems. In particular, we are focusing on: study of the cost factors, cost models, and cost 
metrics related to intrusion detection; development of automated techniques for building cost- 
sensitive models that are optimized for user-defined cost metrics; and design of a system archi- 
tecture for dynamically activating and configuring light intrusion detection modules that each 
specializes for a set of similar intrusions. 

[R] ADAM - Audit Data Analysis and Mining 
[H] http://www.ise.gmu.edu/~dbarbara/adam.html 
[M] ADAM aims to implement an intrusion-detection software that uses a multistrategy ap- 
proach along the following lines: 1. Detect events and patterns directly expressed by the operator 
of the system: the operator, being the ultimate entity responsible for the detection of the system is 
allowed to specify situations that she considers "abnormal." The system monitors the audit trail 
for these conditions and alarms the operator. 2. Mine for association rules that are becoming fre- 

71 



quent recently and are not usually that frequent in similar circumstances (day of the week, time of 
the day). In order to do this, two things must be done: a. Mine the audit trail for the association 
rules that are becoming vvhot" in recent times (the window of observation being a tunable pa- 
rameter), and b. compare those association rules with those that have been frequent at similar 
times in the past. Thus, a repository of ^aggregated" past rules is needed. 3. Use other means of 
data mining to uncover suspicious or abnormal patterns of behavior. 4. Filter and prioritize 
alarms to avoid flooding the operator during and actual intrusion. This step also has the purpose 
of minimizing the number of false diagnoses. 

[R] STAT 
[H] http://www.cs.ucsb.edu/~rsg/STAT/projects.html 
[M] The STAT project provides a framework that supports the development and the control of 
scenario-based sensors. By using STAT, it is possible to create a set of sensors that will operate 
in different domains and environments, e.g., network-based sensors, host-based sensors, and ap- 
plication-based sensors. 

[R] Darpa Intrusion Detection Evaluation 
[H] http://www.ll.mit.edu/IST/ideval/ 
[M] Provides tools, tests, and data sets to evaluate IDS systems 

[R] AID: Application Intrusion Detection 
TH1 http://www.cs.virginia.edu/~iones/IDS-research/ 
[M] Concept Intrusion detection has traditionally been performed at the operating system (OS) 
level, but OS intrusion detection systems (IDS) are frequently insufficient to catch internal in- 
truders. We hypothesized that application specific IDS (AppIDS) could use the semantics of the 
application to detect more subtle, stealth-like attacks such as those carried out by internal intrud- 
ers. We developed two extensive case studies to explore what opportunities exist for detecting 
intrusions at the application level, how effectively an AppIDS can detect the intrusions, and the 
possibility of cooperation between an AppIDS and an OS IDS to detect intrusions. The main 
conclusion was that an AppIDS can detect some intrusions that an OS IDS cannot thus increasing 
the overall effectiveness in detecting intrusions. 
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Chapter 4 

Performance Modeling of a Vote-based Recognition System 
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ABSTRACT 

The focus of this paper is on predicting the bounds on performance of a vote-based object recognition system, 
when the features are distorted by uncertainty in both feature locations and magnitudes, by occlusion and by 
clutter. A method is presented to calculate lower and upper bound predictions of the probability that objects with 
various levels of distorted features will be recognized correctly. The prediction method takes model similarity into 
account, so that when models of objects are more similar to each other, then the probability of correct recognition 
is lower. The effectiveness of the prediction method is validated in a synthetic aperture radar (SAR) automatic 
target recognition (ATR) application using MSTAR public data, which are obtained under different depression 
angles, object configurations and object articulations. Experiments show the performance improvement that 
can obtained by considering the feature magnitudes, compared to a previous performance prediction method 
that only considered the locations of features. In addition, the predicted performance is compared with actual 
performance of a vote-based SAR recognition system using the same SAR scatterer location and magnitude 
features. 

Keywords: SAR data, performance prediction, automatic target recognition 

1. INTRODUCTION 

The goal of our research is to develop a formal framework for predicting the fundamental performance of any 
given object recognition task. This particular paper focuses on predicting performance bounds of model-based 
object recognition systems, where the recognition system uses a feature matching criteria that is vote-based In 
the prediction problem, we are given a model database as well as criteria under which features in a model can be 
distorted. We predict the object recognition performance assuming the system is given test data features that 
are generated by taking a model from the database and subjecting it to the distortion criteria. Our distortion 
model includes uncertainty in both feature locations and magnitudes, occlusion and clutter. 

Our prediction method is general enough to represent the behavior of a wide variety of vote-based recognition 
systems under many different kinds of distortion. It also takes model similarity into account, meaning that when 
models of objects are more similar to each other, then the predicted probability of recognition is lower. It can 
thus be used to explore how various distortion factors and model similarity affect object recognition performance 
We believe that knowing how these factors affect object recognition performance is key to understanding and 
improving the effectiveness of object recognition systems. 

Our prediction builds upon the previous work of Boshra and Bhanu.1 We improve their previous performance 
prediction method by incorporating a more general feature set, namely by including magnitude as a component of 
the feature of a model. Although there have been other performance prediction methods, however none of them 
consider uncertainty, occlusion, clutter, and model similarity when generating the prediction.1-2  In comparison 
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with Boshra and Bhanu's previous work, we also remove some of the assumptions that they needed to simplify 
the performance prediction computation. 

In addition to building a general framework for performance prediction, we also validate our technique by 
testing it in a synthetic aperture radar (SAR) automatic target recognition (ATR) application using MSTAR 
public SAR data. These data are obtained under different depression angles, object configurations and object 
articulations. Experiments show the performance improvement that can obtained by considering the feature 
magnitude, compared to a previous performance prediction method that only considered the locations of features. 
In addition, the predicted performance is compared with actual performance of a vote-based SAR recognition 
system 

Our preliminary results show that our prediction scheme may be an effective way to predict object recognition 
performance. We also show that the benefit of including the magnitudes of features enables us to get the same 
probability of correct recognition at a 5 to 10 percent higher distortion rate. 

2. PREDICTION SYSTEM 

In this section, we describe our system for predicting performance bounds for any vote-based object recognition 
system. Our prediction system takes as input a database of models each consisting of a set of features, and a 
distortion model. It then obtains performance bounds on the model database given the distortion model. Our 
features consist of a discrete x and y location, as well as a magnitude. Our distortion models uncertainty (in 
both location and magnitude), occlusion, and clutter. Our system can also handle arbitrary types of probability 
distribution functions (PDFs) for uncertainty and for clutter. 

Note that the prediction results depends on the entire database of models given to it. When models in the 
database are more similar to each other, then our prediction for the probability of correct recognition (PCR) will 
be lower than if the models are less similar to each other. Our system generates a series of PCR bounds, one 
for each model M in the database. The PCR bounds for M represent the probability that M will be recognized 
correctly if it undergoes the given distortion, and the recognizer must choose from among the entire database of 
possible models for a result. 

We first start by giving a mathematical description both vote-based object recognition and our distortion 
model. We then show how to compute the PCR bounds based on the mathematical descriptions. 

2.1. Basic Object Recognition Definitions 

Our general recognition system has a set M = {M^Mi, ...,Mn}ofn models. Each model consists of a set of 
features, where each feature is a tuple of attributes. In our work, we have three attributes: a horizontal and a 
vertical attribute representing a discrete 2D location, and a magnitude. More formally, a feature / is a tuple 
{x,y, s), where (x, y) e Z x Z is the location of the feature, and s e R is the magnitude. We use T to denote the 
space of all features. Note that M € M is an arbitrary set of features; each model M need not have the same 
number of features. 

The recognition system also is given a set T of transformations over T. Let r € T : T -> T denote one such 
transformation. Then r(/) represents the feature /' which results from taking feature / under transformation 
r. In this work, we consider T = set of all integral 2D-translations. The magnitude s of each feature remains 
unchanged under our transformations. We use ritj to denote the transform that maps (x, y, s) to {x + i, y + j, s). 

An object recognition system is given a set of features F, and seeks to identify (M,T)SMXT that best 
describes F. We call the tuple (M,T) a hypothesis. Intuitively, the input set F is generated by looking at the 
image data (or a simulated signature) of some model object, and then extracting a set of features from the data 
Since the orientation and position of the object in the image data is unknown, the transform r representing 
the location of the object needs to be found, in addition to identifying the correct model M. Furthermore the 
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feature data may be distorted, so that the match between F and some hypothesis (M, r) will generally not be 
exact. 

We consider vote-based recognition systems, where individual features that match contribute votes, and the 
hypothesis is picked based on the highest vote total. Consider the number of votes obtained in such a system, 
by some hypothesis (M, r) on a set of features F. To allow for inexact matches, we consider any feature / e F 
to match a feature /' <E M under transformation r when r(/) is "close enough" to /'. In general, there will be 
some region around each model feature /' that represents how close r(/) needs to be in order to be considered 
a matching feature for /'; this region is known as voting region of /', denoted VR(/'). The size of this region 
typically is chosen by the recognition system to improve performance. 

One example definition of VR for a feature (a;, y, s) is 

VR((ar, y, s)) = {(x',y', s') : (x', y') e 4NEIGHB(a;, y) and .9s < s' < 1.1s}, (l) 

where, 4NEIGHB(x,y) = {(x, y), (x + l,y), (x - 1,y), (x,y + 1), (x,y - 1)} is a set of neighbors of (x,y). 

Strictly speaking, the voting region for a feature /i of M could be a completely different size and shape than 
that of feature f2 of M. For this work, however, we will assume that the size and shape of each voting region 
of every feature of every model M in M. is the same. In other words, there is just one function VR that, when 
applied to any feature /' of model M returns a region VR(/') centered around /'. Any transformed feature r(/) 
falling in VR(/') is considered a match for /' under transformation T. 

Now let V(F, (M, r)) denote the number of votes generated by hypothesis (M, r) on feature set F. We define 
this is as: 

V(F, (M, T)) = |{/' € M : 3/ e F, r(/) e VR(/')}| 

In other words, we are counting the number of features /' of model M that have at least one feature / in 
F matching it. Note that V, the number of votes, clearly depends on the exact definition for the voting region 
To better distinguish between features, we might expect voting regions for two features f{ and fo from some 
model M to be nonoverlapping. However, note that this is not a strict requirement of the above definition If 
the voting regions of f{ and f2 overlap, then one feature / in the feature set F may potentially contribute two 
votes if it happens to be in the union of the two regions VR(/{) U VR(/£). 

We focus on the forced recognition problem, meaning that the object recognition algorithm A running on F 
returns the hypothesis (M,r) that maximizes V(F, (M,r)). 

The performance of the recognition algorithm is measured in terms of the percentage of correct responses 
when recognizing a test data set consisting of many feature set's. There is a ground truth associated with each 
feature set m the test data that represents the correct hypothesis. In many object recognition scenarios, a 
hypothesis that is close enough to the correct one is acceptable. Let Hacc(F) be the set of acceptable hypotheses 
tor the feature set F. Then the performance of algorithm A is measured by the number of feature sets F in the 
test data that satisfy A(F) e Hacc(F). 

2.2. Distortion Model 

As part of the performance prediction scheme, we assume that the feature sets F input into the recognition 
algorithm are generated by distorting features of some model M in the model database. Our distortion process 
consists of three steps: uncertainty, occlusion, and clutter. The distortion depends on the following user-defined 
parameters: 

• Uncertainty PDFs over 7= for each feature, representing how likely each feature is to be perturbed. 
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• Occlusion amount (O), for determining the number of features to occlude. 

• Clutter amount (C), for determining the number of clutter features to add. 

• Clutter Region (CR), for determining where clutter features should be added. 

• Clutter PDF, for determining distribution of clutter over the clutter region. 

For simplicity, we describe our distortion method using uniform PDFs. Using other PDFs is also possible 
and easy to implement. 

Let M = {fi, f2,..., fk} be the model to be distorted. Then the distortion algorithm V does the following: 

1. (Uncertainty) Replace each ft = ((x, y),s), with a new feature /• chosen uniformly at random from the set 

{(x',y',s') : (x',y') e 4NEIGHB(z, y) and .9s < s'< 1.1s} 

2. (Occlusion) Uniformly choose O features out of the k present (so each size k subset is equally likely); 
remove these features. 

3. (Clutter) Add C additional features, where each feature is generated by picking a feature uniformly at 
random from CR (the clutter region). 

The clutter region typically depends upon the given model M that we are distorting. As an example clutter 
region, consider the bounding box on the feature locations and magnitudes in M. More formally, let xmax (armJn) 
represent the x value of the feature with maximum (minimum) magnitude in M. Similarly define ymax, 2/min, smax, 
and Smin. Then the bounding box clutter region CR is 

CR = {(x, y, s) : xmin < x < xmax, ymin <y< ymax, smin < s < smax} (2) 

We define the distortion region of feature /, denoted by DR(/), as the union of all features that could be 
generated as uncertain versions of /. In the above algorithm, the distortion region is the set specified in step 
1. Note that in Boshra and Bhanu,1 the distortion region and the voting regions are always the same; they are 
both called the uncertainty region. Separating out these two regions is useful, because the recognition algorithm 
may not always know the size of the distortion region. Furthermore, under non-uniform distributions where the 
center of the distortion region is more likely to occur, having a voting region smaller than the distortion region 
may result in better performance. 

In step 3 of this distortion model, it is possible that a clutter feature chosen is exactly the same as an occluded 
model feature. If this occurs, our clutter model adds less than C additional features that can be identified as 
clutter. 

Furthermore, it is possible for two clutter features to be chosen with the same (x,y) location. In many cases, 
constraints on the method of generating test data prevents two features from ever sharing the same location, and 
possibly even from sharing in some cases may prevent features from sharing neighboring locations. In these cases, 
it is possible for our distortion algorithm to generate invalid distorted data, either due to overlapping distortion 
regions, or to clutter. We feel that adding a more sophisticated distortion model to handle these constraints will 
significantly increase the complexity of the prediction system without generating a noticeable improvement in 
results. We argue that the distortion regions are typically small enough that they rarely overlap, and when they 
do, the resulting effects are small. Furthermore, number of features studied is typically small compared to the 
size of the clutter region, making it unlikely that overlapping clutter will significantly affect our results. 
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2.3. Prediction Method Overview 

In the performance prediction problem, our goal is to determine the performance of a given recognition system 
when the models to be recognized undergo distortion. Our goal is to determine the probability of correct 
recognition (PCR), which we define as follows: 

Let PCR(M, M, A, V, Hacc) denote the probability that recognition algorithm A will return a hypothesis in 
Hacc when run with knowledge of the models in M. on an input generated by distortion algorithm V running 
on model MeM. 

Note that A (described in 2.1) depends on the size of the voting region VR for each feature and the set of 
transforms T. Also, V (described in section 2.2) depends on many distortion parameters, including occlusion and 
clutter. Note that the PCR implicitly takes into account the similarity between models by using its knowledge 
about the features of all models in M.. 

Let M denote the probability distribution over feature sets obtained when applying V on model M. 

"We can now define V(M, (M', r)) as a random variable representing the number of votes generated by A for 
distorted feature set M on hypothesis (M',r). 

The PCR can be formally defined as 

PCR(M,M,A,V,Hacc) = Pr[v7i' $Hacc,3h € Hacc,V(M,h) > V(M,h')). 

We write PCR(M, Hacc) to denote PCR(M, M,A, Z>, Hacc) when M, A, and V are fixed, Similarly, we define 
the probability of incorrect recognition (PIR) as 

PIR(M,tfacc)    =    l-PCR(M,Hocc) 

=   Prpfc' £ Hacc, Vft € Hacc, V(M, h) < V(M, h')] 

Unfortunately, the abundance of hypotheses appears to make an exact computation of the PCR computation- 
ally infeasible. Thus we approximate the PCR by computing upper and lower bounds on it. For each hypothesis 
h and each model M, we first compute approximate PDFs for V(M, h). We then use these PDFs to derive upper 
and lower bounds on the PCR. Note that in our prediction algorithm, we compute V(M, h) only if it is necessary 
to compute our bounds; we omit the computation of PDFs for many infeasible hypothesis, such as those where 
V(M, h) = 0 with probability 1. 

2.4. Lower bound on PCR 

When computing PCR(M, Hacc), we assume that the correct hypothesis hc = (M, r0,0) is in Hacc. We know that 

PIR{M,Hacc) < Pr[3/i' $ Hacc, s. t. V{M,hc) < V(M,h')], 

because this probability above has less stringent conditions. This is a reasonable approximation since we expect K 
to get the most votes. We can now approximate the above by summing over probabilities of incorrect hypotheses 
having high numbers of votes: 

PIR(M,#acc)<    J2   ?*[V(M,hc)<V(M,h% 

c 

h'<£H, acc 

Now assuming that the voting region is bigger than or equal to the distortion region, we know V(M, hc) > 
\M\ - O, where O is the amount of occlusion. This implies 

Pr[^(M, hc) < V(M, h')} < Pr[|M| - 0 < V(M, h')\. 
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Our overall lower bound on the PCR is 

PCR(M,#occ)>l-    J2   Pr[|M| -0<V{M, h% 

This is easily computed once PDFs for V(M, h') are known. 

2.5. Upper bound on PCR 

Let hc represent the correct hypothesis (M, r0,o). We first approximate the PCR by 

PCR(M, Hacc) « Pr[VA $ Hacc, V(M, hc) > V(M, h)\. 

Note that this is exact and not an approximation when \Hacc\ = 1. Now let if be a set of hypothesis, none of 
which are in Hacc. Then we can bound the above approximation by: 

Pr[V7* £ Hacc, V(M, hc) > V(M, h)} < Pr[V7i e H, V(M, hc) > V(M, h)]. 

o^tw^T-^ fOT any tW° hyP°thesis h and h' in ff. Pr[V(M,hc) > V(M,h)] is independent from 
PrlK(M, hc) > V[M, h')]. That means the above upper bound can be written as 

UPrlv(M,hc)>V(M,h)}. (3) 
heH 

Similar to the method used in the lower bound, we can approximate the above upper bound as 

Y[Pr[\M\-0>V(M,h)}. (4) 

Following the work of Boshra and Bhanu,2 we use the set of peak hypotheses, in the above bound The 
peak hypotheses are those hypotheses whose expected number of votes (for M) are local maxima in the space of 
transforms. It is formally defined as 

H={(M',Ti<j)    :    (M',T) <jLHacc and M'£ M and 

V(x', y') € 8NEIGHB(i, j), (x', y') * (i,j), 

E[V(M, (M',nj))] > E[V(M,(M',Tx,,y,))}} 

Here 8NEIGHB(i, j) is the set of 8 neighbors closest to (i, j) including (i, j), meaning Ux' y'):i-\<x'< 
t +1 and j - 1 < y' < j +1}. " -     - 

We argue that assuming the probabilities above are independent for peak hypotheses is a reasonable assump- 
tion, and not too far from the truth. 

2.6. Computing V(M,h) 

Here we compute the random variable V(M, (M', r)). For conciseness, we use V to denote V(M, (M' r)V M and 
{Mr) are dropped, since they are assumed to be fixed for the rest of this section. There are three components 
to the computation of V: First, we compute the PDF of V» a random variable representing the number of votes 
vZ> C,

T) receives due t0 model similarity, without, considering occlusion. Then we compute the conditional 
PDF of V0, representing the number of similar votes that are occluded given the distribution of V,. Finally we 
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compute Vc, the number of votes contributed due to clutter. Let Vao denote the number of votes due to model 
similarity after considering occlusion. Then 

V = Vso + Vc, 

where Vso is given by 

\M'\ 

Pr[Vso = z] = £ Pr[Vs = v.] Pr[V0 = v. - x\Vs = v.]. 

We compute Vs as a sum of indicator variables X*, where Xi is 0 or 1 depending on whether feature i 
of M, when perturbed according to the uncertainty PDF of the distortion model, will contribute a vote to 
hypothesis (M',r). For the uniform distribution, Pr[X* = 1] is very simple to calculate. Let fc be feature i of 
M. Let VR(M') denote the union of all voting regions of all features of M'. Then Pr[Xj = 1] = VOL(DR(/j) n 
VR(M'))/VOL(DR(/i)), where VOL denotes the volume, calculated over both the location and magnitude. 

For non-uniform distributions, the Pr[Xj = 1] is also fairly simple to calculate. It would simply mean 
calculating Pr[/f € DR(/i) n VR(M')] according to the probability distribution given for the uncertainty in 
location and magnitude. 

Note that we are summing over the distorted features in M to obtain our similarity count, and not summing 
over all possible voting regions that may contribute a vote. If there is no feature whose voting region overlaps 
with more than one distortion region, than our similarity count will be exact. If there are overlaps, then our 
method may over count by letting one voting region contribute more than one vote. However, we do not expect 
much overlap to occur in practice. 

The conditional PDF of V0 is given by the hypergeometric distribution. 

Pr[V0 = x\Vs = vs) = hg(x, \M'\ - vs,0, \M'\), 

where 

M..»^-(?)(&-*)/(5) 
Let pc denote the probability that one clutter feature will contribute a vote. We calculate Vc as a sum of 

C random indicator variables YU...,YC, where Y* is 1 with probability pc. Given a uniform distribution for 
clutter (in both magnitude and location), we know 

PC = VOL(CRn VR(M'))/VOL(CR), 

where CR is the clutter region, and VR(M') is the union of the voting regions for each feature of model M'. 
Calculating pc for non-uniform distributions is also relatively straightforward, by calculating a volume weighted 
by the PDF of the clutter region. 

For example, assume we have a clutter PDF that is non-uniform over the location of features and uniform 
over magnitude. Let wid represent weight assigned for the clutter PDF at location (i,j). Since this is a PDF, we 
know X)(tj-) wi,j — !• Let «min and smax be the bounds for the clutter PDF magnitude at each location. Define 
LOC = {(x,y) : 3s, (x,y,s)sCRfl VR(M')}, as the set of possible locations for clutter. Then we would have 
the probability of clutter contributing a vote as 

YL       W*J \iS : Smin < S < «max} H {(« : (», j, s) € VR(M')}| 
(i,j)eLOC 

Pc = 
smax ~ Smin 
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3. PRELIMINARY RESULTS 

In order to validate the above object recognition performance prediction method, we apply it to identifying 
target vehicles from publicly available synthetic aperture radar (SAR) data. The data consists of images of 
vehicles at many different azimuths, taken from a 15 degree depression angle. Each image is first preprocessed 
to generate scattering centers, which are local eight-neighborhood peaks in magnitude of the SAR data images. 
In our prediction system, these scattering centers are the model features and each image of a vehicle at one 
particular azimuth corresponds to one model M. In the data sets we used, there are typically between 50 and 
80 scattering centers generated in the image preprocessing step. We limit the number of features of each model 
to 30 by using only 30 scattering centers with the highest magnitude in each image. The scattering centers with 
higher magnitude correspond more to the detailed geometry of the object than those of lower magnitude. 

The model database M. that we use consists of 582 models: 194 images of a T-72 tank in configuration #132, 
194 images of a BMP2 Infantry Fighting Vehicle in configuration #c21, and 194 images of a BTR-70 Armored 
Personnel Carrier in configuration #c71. Note that each image depicts a vehicle at a different azimuth. 

In the preliminary results reported below, we used the following parameters in all cases: 

• The voting region VR for each feature is the 4 neighborhood region around the feature, along with a 10% 
uncertainty in magnitude. In other words, it is the sample definition given in equation (1). 

• There is only one acceptable correct hypothesis for each generated distorted feature set. In other words, 
when feature set F is a distorted version of model M, then the set of acceptable hypothesis is given by 
Hacc(F)={(M,r0,o}. 

• Uncertainty PDFs in the distortion model are chosen uniformly at random over the uncertainty region, 
and the uncertainty region around each feature is the same as the voting region given in 1. 

• The occlusion rate (O) is equal to the clutter rate (C). Thus, after occluding O features and adding C 
clutter features, the number of features for each distorted model (30) remains the same as for the original 
model. Hence forth, we use the term Distortion Rate to refer to both O and C. 

• We use a slight modification of the bounding box clutter region given in equation (2). Our clutter region 
replaces the condition smin <s< smax in equation (2) with smin - 10 < s < smax. Allowing features with 
lower magnitudes models the effect of having high-magnitude scattering centers obscured by clutter, and 
replaced by scattering centers that were not originally part of the top 30 scattering centers. 

• The Clutter PDF in the distortion model is uniform. 

Our first experiment calculates the upper and lower bound to the PCR for each model M, according to the 
method presented in sections 2.4, 2.5, and 2.6. To generate an average PCR figure for the entire database M, 
we take the arithmetic mean of the PCRs for each model in the database. We compute the PCR bounds for 
each possible distortion rate value, from 10 up to the maximum of 80. This is shown in Figure 1. 

In our next experiment, we examined how well our upper and lower bounds predict to an experimentally 
derived estimate of the actual PCR value. The actual PCR values were computed as follows: First create a a 
set of randomly generated distorted feature sets by using the distortion algorithm on the database models. We 
computed exactly 4 distorted copies of each model. We then run the recognition algorithm on the distorted 
feature sets to compute the resulting hypothesis for each. The PCR computed is the fraction of correctly 
recognized feature sets, meaning the ones whose resultant hypothesis matches the model from which the feature 
set was created. 

In this preliminary study, we report results for the model database consisting of only 194 images of a T-72 
tank in configuration #132. Results are shown in Figure 2. As can be seen, the results are not good in that 
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Figure 2. PCR prediction results compared to actual values. 

the bounds are not that close to the actual value, and in fact the predicted upper bound is not even above the 
actual value. 

After analyzing our method, we determined that the most significant source of error appears to be the 
approximation of Pr[V(M,hc) < V{M,h)\ with_Pr[|M| - O < V(M,h)}, where hc is the correct hypothesis. 
When the distortion rate is low, we expect V(M,hc) to get about \M\ - O votes since without much added 
clutter, the correct hypothesis should not be getting many extra clutter votes incorrectly matched. However as 
the distortion rates get large, the approximation gets less and less accurate as the larger amount of clutter makes 
it more likely to add in extra votes for the correct hypothesis. In fact, we can see that our bounds for PCR are 
getting worse as the distortion rate increases. It is also clear that the upper bound presented in Section 2 5 is 
not really an upper bound. The upper bound approximation (equation (4)) really needs to be greater than the 
previous upper bound equation (equation (3)), when in fact, it is less than that. 

The two main problems with our above method are that the lower bound is not that close to the actual value 
and the upper bound is completely inaccurate. One way of potentially fixing these problems is to simply try' 
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to approximate the actual value, rather than trying to get both upper and lower bounds. To this end, we also 
ran our final preliminary experiment, where we approximated Pr[V(M, hc) > V(M, h)] with Pr[E(V(M, hc)) > 
V(M, h)], where hc is the correct hypothesis, and E() denotes expected value. Here, we computed E(V(M, hc)) 
as \M| - O + |E(V(M, C))J +1, where V(M, C) is a random variable for the number of clutter votes that would 
be added when given a distorted model M and C clutter features. The overall approximate prediction value can 
be written as: 

Y[Pr[E((VM),hc)>V(M,h)}. 
h€H 

This approximation result is shown in Figure 3, for both the 3D features (including the magnitude), and for 
2D features Where the magnitude is ignored. 
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Figure 3. The new PCR prediction results compared to actual values, for both 2D (location only) and 3D (including 
magnitude) feature sets. 

As can be seen, the predicted results are close to the actual values. Also note that when we add the third 
dimension of magnitude, We can have 10% more distortion than before while still maintaining the same PCR 
level as before. 

4. CONCLUSIONS 

We have presented a general model for predicting the bounds on performance of a wide variety of vote-based 
object recognition systems. We model features as a 2D location and a magnitude, and consider uncertainty (in 
both magnitude and location), occlusion, clutter, and model similarity as part of our performance prediction. 
We have done some preliminary evaluation of our general model to show its potential effectiveness. 

Much, however, remains to be done in this work. More comprehensive tests on more sets of models need to 
be carried out. Furthermore, instead of only comparing to synthetically generated distorted data, performing 
tests on actual data distortion would help to validate our work. Furthermore, it would be interesting to use our 
model to predict the performance of vote-based schemes3 and.4 Comparing our predictions to these implemented 
recognition systems would be useful in showing that the sanitized, mathematically-described algorithms of vote- 
based recognition that we use actually are similar enough to the actually implemented algorithms and that our 
prediction can in fact predict the behavior of the real algorithms. 
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